تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,731,385 |
تعداد دریافت فایل اصل مقاله | 6,362,828 |
CONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 6، دوره 15، شماره 4، مهر و آبان 2018، صفحه 57-71 اصل مقاله (880.41 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2018.4115 | ||
نویسندگان | ||
Sareh Ahmadi* ؛ Mohammad Mehdi Fateh | ||
Department of Electrical and Robotic Engineering, Shahrood University Of Technology, Shahrood, Iran | ||
چکیده | ||
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a rigid robot and then control methods for rigid robots are applied. Feedback linearization and direct adaptive fuzzy control, based on rigid model, are designed with torque control strategy. A decentralized adaptive fuzzy controller is designed because of simplicity and ease of implementation. Effectiveness of the proposed control approach is demonstrated by simulations, using a three-joint articulated flexible-joint robot, driven by permanent magnet dc motors. | ||
کلیدواژهها | ||
Interior operator؛ Interior system؛ Fuzzy set؛ Fuzzy logic | ||
مراجع | ||
[1] B. Brogliato, R. Ortega and R. Lozano, Global tracking controllers for flexible-joint manip- ulators: a comparative study, Automatica, 31(7) (1995), 41{956. [2] L. L. Chang and C. C. Chuan, Rigid model-based fuzzy control of flexible-joint manipulators, J. Intell. Robot. Syst., 13(2) (1995), 107{126. [3] A. De Luca and L. Lanari, Robots with elastic joints are linearizable via dynamic feedback, In: 34th IEEE Conf. on Decision and Control, New Orleans, LA, 1995. [4] A. De Luca, B. Siciliano and L. Zollo, PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments for robots with elastic Joints, Automatica., 41 (2005), 1809{1819. [5] M. M. Fateh, S. M. Ahmadi and S. Khorashadi zadeh, adaptive RBFN network control for robot manipulators, Journal of AI and Data Mining, 2(2) (2014), 159-156. [6] M. M. Fateh, Decentralized direct adaptive fuzzy control for flexible joint robots, CEAI, 15 (2013), 97{105. [7] M. M. Fateh, Decentralized direct adaptive fuzzy control of robots using control voltage strat- egy, Nonlinear Dynamics,70 (2012), 1919{1930. [8] S. H. Hsua and L. C. Fua, A fully adaptive decentralized control of robot manipulators, Automatica, 42 (2006), 1761{1767. [9] A. Kugi, C. Ott, A. Albu-Schaffer and G. Hirzinger, On the Passivity-Based Impedance Control of Flexible Joint Robots, IEEE Trans. Robot. Autom, 24(2) (2008), 416{429. [10] T. H. S. Li and Y. C. Huang, MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators, Information Sciences, 180(23) (2010), 4641{4660. [11] T. S. Li, S. C. Tong and G. Feng, A novel robust adaptive fuzzy tracking control for a class of nonlinear multiinput/ multi-output systems, fuzzy systems, IEEE Trans. Fuzzy Syst, 18(1) (2010), 150{160. [12] P. Shendge and V. Suryawanshi, Sliding Mode Control for Flexible Joint using Uncertainty and Disturbance Estimation, Proceedings of the World Congress on Engineering and Com- puter Science WCECS , San Francisco, USA, 2011. [13] Y. Shen, W.J. Cai and S. Li, Multivariable process control: decentralized, decoupling, or sparse, Ind. Eng. Chem. Res, 49 (2010), 761{771. [14] H. Seraji, Decentralized adaptive control of manipulators: theory, simulation, and experi- mentation, IEEE Trans. Robot. Autom, 5 (1989), 183{200. [15] J. Soltine and W. Li, Applied nonlinear control, Prentice Hall, 1991. [16] M. W. Spong, S. Hutchinson and M. Vidyasagar, Robot Modelling and Control, Wiley, New York, 2006. [17] M. W. Spong, Adaptive control of flexible joint manipulators: comments on two papers. Automatica, 31(4) (1995), 585{590. [18] M. W. Spong, Modeling and control of elastic joint robots, J. Dyn. Syst. Meas. Control, 109 (1987), 310{319. [19] L. M. Sweet and M. C. Good, Redenition of the robot motion control problem, IEEE Control Syst. Mag, 5(3) (1985), 18{24. [20] E. Talole, P. Kolhe and B. Phadke, Extended state observer based control of flexible joint system with experimental validation, IEEE Trans. Ind. Electron, 57(4) (2009), 1411{1419. [21] P. Tomei, A simple PD controller for robots with elastic Joints, IEEE Trans. Autom. Control, 36(10) (1991), 1208{1213. [22] S. Tong, Y. Li and Y. Liu, Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Trans. Syst. Man Cybern, Part B, Cybern, 41(6) (2011), 1693{1704. [23] S. Tong, H. X. Li and W. Wang, Observer-based adaptive fuzzy control for SISO nonlinear systems, Fuzzy Sets Syst., 148(3) (2004), 355{376. [24] S. Tong, C. Liu and Y. Li, Fuzzy adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties, IEEE Trans. Fuzzy Syst, 18(5) (2010), 845{ 861. [25] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, Englewood Cliffs, 1996. [26] D. Wang, A simple iterative learning controller for manipulators with flexible joints, Auto- matica, 31(9) (1995), 1341{1344. [27] J. S. Yeon, J. H. Park and S. H Lee, Practical Robust Control Of Flexible Joint Robot Manipulators, 17th World Congress: The International Federation of Automatic Control, Seoul, Korea, 2008. [28] V. Zeman, R. V Patel and K. Khorasani, Control of a flexiblejoint robot using neural net- works, IEEE Trans. Control Syst. Technol, 5(4) (1997), 453{462. | ||
آمار تعداد مشاهده مقاله: 988 تعداد دریافت فایل اصل مقاله: 555 |