
تعداد نشریات | 33 |
تعداد شمارهها | 772 |
تعداد مقالات | 7,486 |
تعداد مشاهده مقاله | 12,490,792 |
تعداد دریافت فایل اصل مقاله | 8,482,315 |
Some new variants of interval-valued Gronwall type inequalities on time scales | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 15، دوره 16، شماره 5، آذر و دی 2019، صفحه 187-198 اصل مقاله (198.21 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2019.4918 | ||
نویسندگان | ||
A. Younus* ؛ M. Asif؛ K. Farhad؛ O. Nisar | ||
Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan, Pakistan | ||
چکیده | ||
By using an efficient partial order and concept of gH-differentiability on interval-valued functions, we investigate some new variants of Gronwall type inequalities on time scales, which provide explicit bounds on unknown functions. Our results not only unify and extend some continuous inequalities, but also in discrete case, all are new. | ||
کلیدواژهها | ||
Interval-valued functions؛ generalized Hukuhara difference؛ dynamic inequality؛ Gronwall inequality | ||
مراجع | ||
[1] E. Akin-Bohner, M. Bohner, F. Akin, Pachpatte inequalities on time scales, Journal of Inequalities in Pure and Applied Mathematics, 6(1) (2005), Article 6, 23 pp. [2] D. Bainov, P. Simeonov, Integral inequalities and applications, Kluwer Academic Publishers Group, Dordrecht, 1992. [3] R. Bellman, The stability of solutions of linear differential equations, Duke Mathematical Journal, 10 (1943), 643- 647. [4] M. Bohner, A. Peterson, Dynamic equations on time scales, an introduction with applications, Birkhauer, Basel, 2001. [5] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkh¨auser, Boston, 2003. [6] S. K. Choi, N. Koo, On a Gronwall-type inequality on time scales, Journal of the Chungcheong Mathematical Society, 23(1) (2010) 137-147. [7] Y. Chalco-Cano, A. Flores-Franuliˇc, H. Rom´an-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Computational and Applied Mathematics, 31(2) (2012) 457-472. [8] Y. Chalco-Cano, H. Rom´an-Flores, M. D. Jim´e nez-Gamero, Generalized derivative and positive implicativederivative for set-valued functions, Information Sciences, 181(11) (2011), 2177-2188. [9] J. L. Cie´sli´nski, New definitions of exponential, hyperbolic and trigonometric functions on time scales, Journal of Mathematical Analysis and Applications, 388(1) (2012), 8-22. [10] J. L. Cie´sli´nski, Some implications of a new approach to exponential functions on time scales, Discrete & Continuous Dynamical Systems 2011, in: Dynamical systems, differential equations and applications. 8th AIMS Conference. Suppl, 1 (2011), 302–311. [11] J. D. Gallego-Posada, E. Puerta-Yepes, Interval analysis and optimization applied to parameter estimation under uncertainty, Boletim da Sociedade Paranaense de Matemtica, 36(2) (2018), 107-121. [12] T. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Annals of Mathematics, 20 (1919), 292-296. [13] S. Hilger, Special functions, Laplace and Fourier transform on measure chains, Dynamic Systems and Applications, 8(3-4) (1999), 471-488. [14] S. Hilger, Analysis on measure chains: A unied approach to continuous and discrete calculus, Results in Mathematics, 18(1-2) (1990), 18-56. [15] S. Hilger, Ein Makettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universit¨at W¨urzburg, 1988. [16] W. N. Li, W. Sheng, Some Gronwall type inequalities on time scales, Journal of Mathematical Inequalities, 4(1) (2010), 67-76. [17] V. Lupulescu, Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Information Sciences, 248 (2013), 50–67. [18] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Inequlities involving functions and their integrals and derivatives, Kluwer Academic Publishers, Dordrecht, 1991. [19] S. Markov, Calculus for interval functions of a real variables, Computing, 22(4) (1979), 325-337. [20] R. Moore, W. Lodwick, Interval analysis and fuzzy set theory, Fuzzy Sets and Systems, 135(1) (2003), 5-9. [21] R. E. Moore, Methods and applications of interval analysis, SIAM Studies in Applied Mathematics, Philadelphia, 1979. [22] B. G. Pachpatte, Inequalities for Differential and Integral Equations, Vol. 197 of Mathematics in Science and Engineering. Academic Press Inc., San Fiego, CA, 1998. [23] B. G. Pachpatte, Inequalities for finite difference equations, Vol. 247 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 2002. [24] H. Roman-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for interval valued functions, in:IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), 2013. [25] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161(11) (2010), 1564-1584. [26] V. Yadav, A. K. Bhurjee, S, Karmaker, A. k. Dikshit, A facility location model for municipal solid waste management system under uncertain envioronment, Science of the Total Environment, (603-604) (2017), 760-771. [27] A. Younus, M. Asif, K. Farhad, On Gronwall type inequalities for interval-valued functions on time scales, Journal of Inequalities and Applications, 2015(271) (2015), 1-18. | ||
آمار تعداد مشاهده مقاله: 609 تعداد دریافت فایل اصل مقاله: 451 |