
تعداد نشریات | 33 |
تعداد شمارهها | 764 |
تعداد مقالات | 7,395 |
تعداد مشاهده مقاله | 12,232,804 |
تعداد دریافت فایل اصل مقاله | 8,348,520 |
Fuzzy logic and enriched categories | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 2، دوره 18، شماره 3، مرداد و شهریور 2021، صفحه 1-11 اصل مقاله (372.24 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2021.6077 | ||
نویسندگان | ||
S. Dautovic* ؛ M. Zekic | ||
Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia | ||
چکیده | ||
We consider a category C enriched over the segment [0,1] whose hom-objects are real numbers from [0,1]. For a suitably defined function $\hat{v}$ assigning to each formula $\varphi$ some object of $\C$, the hom-object $\C(\hat{v} (\varphi),\hat{v}(\psi))$ represents the degree of derivability of $\psi$ from $\varphi$. We reformulate completeness result for intuitionistic propositional logic, as well as H' ajek's completeness results concerning the product, G\" odel and \L ukasiewicz fuzzy logic in the context of enriched category theory. | ||
کلیدواژهها | ||
Product fuzzy logic؛ G" odel fuzzy logic؛ L ukasiewicz fuzzy logic؛ t-norm؛ bicartesian closed $V$-enriched category؛ self-enriched ca-tegory | ||
آمار تعداد مشاهده مقاله: 516 تعداد دریافت فایل اصل مقاله: 637 |