تعداد نشریات | 29 |
تعداد شمارهها | 630 |
تعداد مقالات | 6,368 |
تعداد مشاهده مقاله | 9,731,382 |
تعداد دریافت فایل اصل مقاله | 6,362,825 |
On the distributivity of T-power based implications | ||
Iranian Journal of Fuzzy Systems | ||
مقاله 13، دوره 19، شماره 2، خرداد و تیر 2022، صفحه 169-186 اصل مقاله (229.71 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2022.6797 | ||
نویسندگان | ||
Z. Peng* ؛ J. Pan | ||
College of Mathematics and Statistics, Yangtze Normal University, Chongqing, PR China | ||
چکیده | ||
Due to the fact that Zadeh's quantifiers constitute the usual method to modify fuzzy propositions, the so-called family of T-power based implications was proposed. In this paper, the four basic distributive laws related to T-power based fuzzy implications and fuzzy logic operations (t-norms and t-conorms) are deeply studied. This study shows that two of the four distributive laws of the T-power based implications have a unique solution, while the other two have multiple solutions. | ||
کلیدواژهها | ||
T-power based implications؛ distributivity؛ t-norms؛ t-conorms | ||
مراجع | ||
1] M. Baczyński, On the distributivity of fuzzy implications over continuous and Archimedean triangular conorms, Fuzzy Sets and Systems, 161 (2010), 1406-1419.
[2] M. Baczyński, P. Grzegorzewski, R. Mesiar, P. Helbin, W. Niemyska, Fuzzy implications based on semicopulas, Fuzzy Sets and Systems, 323 (2017), 138-151.
[3] M. Baczyński, B. Jayaram, On the characterization of (S, N)-implications, Fuzzy Sets and Systems, 158(15) (2007), 1713-1727.
[4] M. Baczyński, B. Jayaram, Fuzzy implications, Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg, 2008.
[5] M. Baczyński, B. Jayaram, (S, N)- and R-implications: A state-of-the-art survey, Fuzzy Sets and Systems, 159(14) (2008), 1836-1859.
[6] M. Baczyński, B. Jayaram, On the distributivity of fuzzy implications over nilpotent or strict triangular conorms, IEEE Transactions Fuzzy Systems, 17 (2009), 590-603.
[7] J. Balasubramaniam, Rule reduction for efficient inferencing in similarity based reasoning, International Journal of Approximate Reasoning, 48 (2008), 156-173.
[8] J. Balasubramaniam, C. J. M. Rao, On the distributivity of implication operators over T and S norms, IEEE Transactions Fuzzy Systems, 12 (2004), 194-198.
[9] W. E. Combs, J. E. Andrews, Combinatorial rule explosion eliminated by a fuzzy rule, configuration, IEEE Transactions on Fuzzy Systems, 6 (1998), 1-11.
[10] P. Grzegorzewski, Probabilistic implications, Fuzzy Sets and Systems, 226 (2013), 53-66.
[11] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer, Dordrecht, 2000.
[12] J. Lu, B. Zhao, Distributivity of a class of ordinal sum implications over t-norms and t-conorms, Fuzzy Sets and Systems, 378 (2020), 103-124.
[13] S. Massanet, J. Recasens, J. Torrens, Fuzzy implication functions based on powers of continuous t-norms, International Journal of Approximate Reasoning, 83 (2017), 265-279.
[14] S. Massanet, J. Recasens, J. Torrens, Corrigendum to “Fuzzy implication functions based on powers of continuous t-norms”, [Int. J. Approx. Reason. 83 (2017) 265-279], International Journal of Approximate Reasoning, 104 (2019), 144-147.
[15] Z. Peng, A new family of (A, N)-implications: Construction and properties, Iranian Journal of Fuzzy Systems, 17(2) (2020), 129-145.
[16] Z. Peng, The study on semicopula based implications, Kybernetika, 56(4) (2020), 662-694.
[17] Y. Su, W. W. Zong, H. W. Liu, On distributivity equations for uninorms over semi-t-operators, Fuzzy Sets and Systems, 299 (2016), 41-65.
[18] Y. Su, W. W. Zong, H. W. Liu, Distributivity of the ordinal sum implications over t-norms and t-conorms, IEEE Transactions Fuzzy Systems, 24 (2016), 827-840.
[19] E. Trillas, C. Alsina, On the law [(p ∧ q) → r] ≡ [(p → r) ∨ (q → r)] in fuzzy logic, IEEE Transactions Fuzzy Systems, 10(1) (2002), 84-88.
[20] A. Xie, H. Liu, F. Zhang, C. Li, On the distributivity of fuzzy implications over continuous Archimedean t-conorms and continuous t-conorms given as ordinal sums, Fuzzy Sets and Systems, 205 (2012), 76-100. [21] R. R. Yager, On some new classes of implication operators and their role in approximate reasoning, Information Sciences, 167 (2004), 193-216. | ||
آمار تعداد مشاهده مقاله: 390 تعداد دریافت فایل اصل مقاله: 393 |