
تعداد نشریات | 32 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,264 |
تعداد مشاهده مقاله | 11,989,445 |
تعداد دریافت فایل اصل مقاله | 8,172,344 |
Fractional-Order Variable Structure Equations In Robust Control | ||
International Journal of Industrial Electronics Control and Optimization | ||
مقاله 3، دوره 6، شماره 2، شهریور 2023، صفحه 101-111 اصل مقاله (595.26 K) | ||
نوع مقاله: Research Articles | ||
شناسه دیجیتال (DOI): 10.22111/ieco.2023.44582.1464 | ||
نویسندگان | ||
Mohammad Haddad-Zarif* 1؛ Ebrahim Abbaszadeh2 | ||
1Shahrood University of Technology, Department of Electrical and Robotic Engineering | ||
2Department of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood, Iran | ||
چکیده | ||
This work is trying to introduce a fractional order floated pole controller as a fast and robust approach. We designed a robust variable structure control that yields a continuous and constrained control signal, also a fast response in the presence of model uncertainties and external disturbances. In the proposed controller, we employed the pole placement algorithm, then by designing proper polynomials gave it robust property, then due to a simple optimization routine, we make it fast and faster within the stability region. Finally, to evaluate the proposed method, numerical examples in different situations of the presence of noise, disturbance, and model uncertainties, also comparative results are presented. This paper proposed an accurate, fast, and robust controller. This can improve the performance of the perturbed functional systems used in the industrial fields. It is proposed to spread the benefit of fractional calculus in the control of complex systems in practical situations. | ||
کلیدواژهها | ||
Fractional-order؛ Robust Control؛ Fast Response؛ Variable Structure Control | ||
مراجع | ||
[1] P. Warrier and P. Shah, "Fractional Order Control of Power Electronic Converters in Industrial Drives and Renewable Energy Systems: A Review," in IEEE Access, vol. 9, pp. 58982-59009, 2021, doi: 10.1109/ACCESS.2021.3073033.
[2] Gholipour, R., Fateh, M.M. Robust Control of Robotic Manipulators in the Task-Space Using an Adaptive Observer Based on Chebyshev Polynomials. J Syst Sci Complex 33, 1360–1382 (2020). https://doi.org/10.1007/s11424-020-8186-0 [3] Y. Chen, I. Petras, and D. Xue, ‘‘Fractional order control A tutorial,’’ in Proc. Amer. Control Conf., Jun. 2009, pp. 1397–1411. [4] Batiha IM, Ababneh OY, Al-Nana AA, Alshanti WG, Alshorm S, Momani S. A Numerical Implementation of Fractional-Order PID Controllers for Autonomous Vehicles. Axioms. 2023 Mar 17;12(3):306. [5] Zamani AA, Etedali S. Seismic structural control using magneto-rheological dampers: A decentralized interval type-2 fractional-order fuzzy PID controller optimized based on energy concepts. ISA transactions. 2023 Feb 7. [6] S. Pandey, P. Dwivedi, and A. S. Junghare, ‘‘A novel 2-DOF fractional-order PI λ – D µ controller with inherent antiwindup capability for a magnetic levitation system,’’ AEUInt. J. Electron. Commun., vol. 79, pp. 158171, Sep. 2017.http://www.sciencedirect.com/science/article/pii/S1434841117301905 [7] P. Shah and S. Agashe, ‘‘Review of fractional PID controller,’’ Mechatronics, vol. 38, pp. 2941, Sep. 2016. http://www.sciencedirect.com/science/article/pii/S095741581630068X [8] Chen Y, Tang C, Roohi M. Design of a model-free adaptive sliding mode control to synchronize chaotic fractional order systems with input saturation: An application in secure communications. Journal of the Franklin Institute. 2021 Oct 1;358(16):8109-37. [9] Mohammad Ghamgosar, Seyed Mehdi MirhosseiniAlizamini, Mahmood Dadkhah, Design of Optimal Sliding Mode Control based on Linear Matrix Inequality for Fractional Time-Varying Delay Systems, International Journal of Industrial Electronics, Control and Optimization (IECO), Volume 5, Issue 4 , December 2022, , Pages 317- 325, https://doi.org/10.22111/ieco.2022.42132.1423 .. [10] Rouhani SH, Mojallali H, Baghramian A. Load frequency control in the presence of simultaneous cyber-attack and participation of demand response program. Transactions of the Institute of Measurement and Control. 2022 Jun;44(10):1993-2011. [11] Shokoohinia, M.R., Fateh, M.M. & Gholipour, R. Design of an adaptive dynamic sliding mode control approach for robotic systems via uncertainty estimators with exponential convergence rate. SN Appl. Sci. 2, 180 (2020). https://doi.org/10.1007/s42452-020-1947-5. [12] Chen SB, Beigi A, Yousefpour A, Rajaee F, Jahanshahi H, Bekiros S, Martínez RA, Chu Y. Recurrent neural networkbased robust nonsingular sliding mode control with input saturation for a non-holonomic spherical robot. IEEE access. 2020 Oct 13;8:188441-53. [13] Wang YL, Jahanshahi H, Bekiros S, Bezzina F, Chu YM, Aly AA. Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-orderfinancial system with market confidence. Chaos, Solitons & Fractals. 2021 May 1;146:110881. [14] Dipayan Guha, Provas Kumar Roy, Subrata Banerjee, Adaptive fractional-order sliding-mode disturbance observer based robust theoretical frequency controller applied to hybrid wind–diesel power system, ISA Transactions, 2022, ISSN 0019-0578, https://doi.org/10.1016/j.isatra.2022.06.030.
[15] S. Hou, Y. Chu, and J. Fei, ‘‘Intelligent global sliding mode control using recurrent feature selection neural network for active power filter,’’ IEEE Trans. Ind. Electron., early access, Jun. 12, 2020, doi: 10.1109/TIE.2020.3000098. [16] J. Wang, W. Luo, J. Liu, and L. Wu, ‘‘Adaptive type-2 FNNbased dynamic sliding mode control of DC–DC boost converters,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 51, no. 4, pp. 2246–2257, Apr. 2021. [17] Shengzheng Kang, Hongtao Wu, Xiaolong Yang, Yao Li, Liang Pan, Bai Chen, Fractional robust adaptive decoupled control for attenuating creep, hysteresis and cross coupling in a parallel piezostage, Mechanical Systems and Signal Processing, Volume 159, 2021, 107764,ISSN 0888-3270, https://doi.org/10.1016/j.ymssp.2021.107764. [18] Kaheni M, Zarif MH, Kalat AA, Fadali MS. Soft variable structure control of linear systems via desired pole paths. Information Technology and Control/Informacinės technologijos ir valdymas. 2018 Sep 10;47(3):447-56. [19] Abbaszadeh E, Haddad-Zarif M. Soft variable structure control of linear fractional-order systems with actuators saturation. ISA transactions. 2022 Mar 10. [20] Åström KJ, Wittenmark B. Computer-controlled systems: theory and design. Courier Corporation; 2013 Jun 13. [21] Tabatabaei M, Haeri M. Characteristic ratio assignment in fractional order systems. ISA transactions. 2010 Oct 1;49(4):470-8. [22]Rasouli H, Fatehi A, Zamanian H. Design and implementation of fractional order pole placement controller to control the magnetic flux in Damavand tokamak. Review of Scientific Instruments. 2015 Mar 10;86(3):033503. [23] Junior FA, Bessa I, Pereira VM, da Silva Farias NJ, de Menezes AR, de Medeiros RL, Chaves Filho JE, Lenzi MK, da Costa Júnior CT. Fractional Order Pole Placement for a buck converter based on commensurable transfer function. ISA transactions. 2020 Dec 1;107:370-84. [24] Zúñiga-Aguilar CJ, Gómez-Aguilar JF, Romero-Ugalde HM, Escobar-Jiménez RF, Fernández-Anaya G, Alsaadi FE. Numerical solution of fractal-fractional Mittag–Leffler differential equations with variable-order using artificial neural networks. Engineering with Computers. 2021:1-4. [25] Sivakumar S, Sathik MJ, Manoj PS, Sundararajan G. An assessment on performance of DC–DC converters for renewable energy applications. Renewable and Sustainable Energy Reviews. 2016 May 1;58:1475-85. [26] Ahmed G. Radwan, Ahmed A. Emira, Amr M. AbdelAty, Ahmad Taher Azar, Modeling and analysis of fractional order DC-DC converter,ISA Transactions, Volume 82, 2018, Pages 184-199, ISSN 0019-0578, https://doi.org/10.1016/j.isatra.2017.06.024. [27] Pouzesh M, Mobayen S. Event-triggered fractional-order sliding mode control technique for stabilization of disturbed quadrotor unmanned aerial vehicles. Aerospace Science and Technology. 2022 Feb 1;121:107337. [28] Zamani AA, Etedali S. Optimal fractional-order PID control design for time-delayed multi-input multi-output seismicexcited structural system. Journal of Vibration and Control. 2023 Feb;29(3-4):802-19. | ||
آمار تعداد مشاهده مقاله: 232 تعداد دریافت فایل اصل مقاله: 229 |