تعداد نشریات | 31 |
تعداد شمارهها | 698 |
تعداد مقالات | 6,840 |
تعداد مشاهده مقاله | 11,121,748 |
تعداد دریافت فایل اصل مقاله | 7,502,243 |
S-generalized distances with respect to ordinal sums | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 1، فروردین و اردیبهشت 2024، صفحه 129-141 اصل مقاله (463.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2023.45897.8079 | ||
نویسندگان | ||
Lijun Sun1؛ Chen Zhao1؛ Gang Li* 2؛ Feng Qin3 | ||
1School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China | ||
2School of Mathematics and Statistics, Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China | ||
3School of Mathematics and Satistics, Jiangxi Normal University, Nanchang, PR China | ||
چکیده | ||
In this paper, the class of S-generalized distances such that the involved t-conorms S are ordinal sums is discussed. It is shown that these S-generalized distances can be thought of as families of generalized distances with respect to some Archimedean t-conorms. We also deal with the S-generalized distance aggregations, which merge a family of S_{i}-generalized distances into a new S-generalized distance | ||
کلیدواژهها | ||
t-conorm؛ S-generalized distance؛ ordinal sum؛ aggregation function | ||
مراجع | ||
[1] G. Birkho , Lattice theory, American Mathematical Society, 25, 1940.
[2] J. Borsik, J. Dobos, On a product of metric spaces, Mathematica Slovaca, 31 (1981), 193-205.
[3] Y. Cao, S. X. Sun, H. Wang, G. Chen, A behavioral distance for fuzzy transition systems, IEEE Transactions on Fuzzy Systems, 21(4) (2002), 735-747. [4] J. Casasnovas, F. Rossello, Averaging fuzzy biopolymers, Fuzzy Sets and Systems, 152(1) (2005), 139-158.
[5] A. H. Cli ord, Naturally totally ordered commutative semigroups, American Journal of Mathematics, 76(3) (1954), 631-646. [6] J. Desharnais, R. Jagadeesan, V. Gupta, P. Panangaden, The metric analogue of weak bisimulation for probabilistic processes, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, (2002), 413-422. [7] E. Deza, M. M. Deza, M. M. Deza, E. Deza, Encyclopedia of distances, Springer, 2009.
[8] M. Grabisch, Aggregation functions, Cambridge University Press, 127, 2009.
[9] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Springer Science and Business Media, 8, 2013.
[10] S. Massanet, O. Valero, New results on metric aggregation, Proceedings of the 17th Spanish Conference on Fuzzy Technology and Fuzzy Logic (Estylf 2012), (2012), 558-563. [11] G. Mayor, O. Valero, Metric aggregation functions revisited, European Journal of Combinatorics, 80 (2019), 390- 400. [12] D. Park, Concurrency and automata on in nite sequences, Theoretical Computer Science, 104 (1981), 167-183.
[13] A. Pradera, E. Trillas, A note on pseudometrics aggregation, International Journal of General Systems, 31(1) (2002), 41-51. [14] A. Pradera, E. Trillas, E. Casti~neira, On distances aggregation, Proceedings of the Information Processing and Management of Uncertainty in Knowledge-Based Systems International Conference, Universidad Politcnica de Madrid Press, 2 (2000), 693-700. [15] A. Pradera, E. Trillas, E. Casti~neira, On the aggregati on of some classes of fuzzy relations, Technologies for Constructing Intelligent Systems, 2 (2002), 125-136. [16] N. M. Ralevic, M. Delic, L. Nedovic, Aggregation of fuzzy metrics and its application in image segmentation, Iranian Journal of Fuzzy Systems, 19(3) (2022), 19-37. [17] D. Sangiorgi, On the origins of bisimulation and coinduction, ACM Transactions on Programming Languages and Systems (TOPLAS), 31(4) (2009), 1-41. [18] A. K. Seda, P. Hitzler, Generalized ultrametrics, domains and an application to computational logic, Irish Mathematical Society Bulletin, 41 (1998), 31-43. [19] L. Sun, C. Zhao, G. Li, Aggregation of S-generalized distances, Proceedings of the International Conference on Intelligent Computing, Singapore: Springer Nature Singapore, (2023), 527-536. [20] F. Van Breugel, J. Worrell, A behavioural pseudometric for probabilistic transition systems, Theoretical Computer Science, 331(1) (2005), 115-142. [21] T. Yan, Y. Ouyang, A note on the ordinal sum of triangular norms on bounded lattices, Iranian Journal of Fuzzy Systems, 20(4) (2023), 75-80. | ||
آمار تعداد مشاهده مقاله: 296 تعداد دریافت فایل اصل مقاله: 443 |