
تعداد نشریات | 32 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,264 |
تعداد مشاهده مقاله | 11,989,443 |
تعداد دریافت فایل اصل مقاله | 8,172,343 |
Diamond Alpha Differentiability of Interval-Valued Functions and Its Applicability to Interval Differential Equations on Time Scales | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 1، فروردین و اردیبهشت 2024، صفحه 143-158 اصل مقاله (603.09 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.45184.7977 | ||
نویسندگان | ||
Tri Truong1؛ Baruch Schneider1؛ Linh Nguyen Le Toan Nhat* 2 | ||
1Department of Mathematics, Faculty of Science, University of Ostrava, Czech Republic | ||
2Applied Analysis Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam | ||
چکیده | ||
Modelling phenomena with interval differential equations (IDEs) is an effective way to consider the uncertainties that are unavoidable when collecting data. Similarly to the theory of ordinary differential equations, IDEs have been parallelly investigated with the interval difference equations from the beginning. These two branches can be regarded as one when unifying continuous and discrete solution domains. A conspicuous advantage when merging these areas is that the proof of several analogous properties in both theories need not be repeated. The paper provides a common and efficient tool for studying IDEs not only with continuous or discrete solution domains but also with more general ones. We propose the diamond-$\alpha$ derivative for interval-valued functions (IVFs) on time scales with respect to the generalized Hukuhara difference. Differently from most of the studies on the derivatives of functions on time scales, using the language of epsilon-delta, the novel concept is naturally studied according to the limit of IVFs on time scales as in classical mathematics. A particular class of IDEs on time scales is then considered with respect to the diamond-$\alpha$ derivative. Numerical problems are elaborated to illustrate the necessity and efficiency of the latter. | ||
کلیدواژهها | ||
Generalized Hukuhara difference؛ time scales؛ dynamic derivatives؛ interval differential equations | ||
مراجع | ||
[1] B. Bede, I. J. Rudas, A. L. Bencsik, First order linear fuzzy di erential equations under generalized di erentiability, Information Sciences, 177(7) (2007), 1648-1662. [2] R. Beigmohamadi, A. Khastan, Interval discrete fractional calculus and its application to interval fractional di er- ence equations, Iranian Journal of Fuzzy Systems, 18(6) (2021), 151-166. [3] R. Beigmohamadi, A. Khastan, J. Nieto, R. Rodr´ıguez-L´opez, Discrete fractional calculus for fuzzy-number-valued functions and some results on initial value problems for fuzzy fractional di erence equations, Information Sciences, 618 (2022), 1-13. [4] M. Bohner, T. Cuchta, S. Streipert, Delay dynamic equations on isolated time scales and the relevance of one-periodic coecients, Mathematical Methods in the Applied Sciences, 45(10) (2022), 5821-5838. [5] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science and Business Media, New York, 2001. [6] S. G. Georgiev, ˙I. M. Erhan, The taylor series method of order p and adams-bashforth method on time scales, Mathematical Methods in the Applied Sciences, 46(1) (2021), 304-320. [7] T. Gulsen, I. Jadlovsk´a, E. Yilmaz, On the number of eigenvalues for parameter-dependent di usion problem on time scales, Mathematical Methods in the Applied Sciences, 44(1) (2021), 985-992. [8] M. Guzowska, A. B. Malinowska, M. R. S. Ammi, Calculus of variations on time scales: Applications to economic models, Advances in Difference Equations, 2015(1) (2015), 1-15. [9] S. Hong, Di erentiability of multivalued functions on time scales and applications to multivalued dynamic equations, Nonlinear Analysis: Theory, Methods and Applications, 71(9) (2009), 3622-3637. [10] L. L. Huang, G. C. Wu, D. Baleanu, H. Y. Wang, Discrete fractional calculus for interval-valued systems, Fuzzy Sets and Systems, 404 (2021), 141-158. [11] M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10(3) (1967), 205-223. [12] A. Khastan, S. Hejab, First order linear fuzzy dynamic equations on time scales, Iranian Journal of Fuzzy Systems, 16(2) (2019), 183-196. [13] A. Khastan, R. Rodr´ıguez-L´opez, M. Shahidi, New di erentiability concepts for set-valued functions and applica- tions to set di erential equations, Information Sciences, 575 (2021), 355-378. [14] R. Leelavathi, G. Suresh Kumar, R. P. Agarwal, C. Wang, M. Murty, Generalized nabla di erentiability and integrability for fuzzy functions on time scales, Axioms, 9(2) (2020), 65. [15] V. Lupulescu, Hukuhara di erentiability of interval-valued functions and interval di erential equations on time scales, Information Sciences, 248 (2013), 50-67. [16] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, SIAM, Philadelphia, 2009.
[17] E. P. Oppenheimer, A. N. Michel, Application of interval analysis techniques to linear systems. i. fundamental results, IEEE Transactions on Circuits and Systems, 35(9) (1988), 1129-1138. [18] L. V. Phut, N. V. Hoa, The solvability of interval-valued abel integral equations on a time scale with trigonometric representation of parameterized interval analysis, Physica Scripta, (2023). DOI:10.1088/1402-4896/ace137. [19] J. W. Rogers Jr, Q. Sheng, Notes on the diamond-α dynamic derivative on time scales, Journal of Mathematical Analysis and Applications, 326(1) (2007), 228-241. [20] Q. Sheng, A view of dynamic derivatives on time scales from approximations, Journal of Difference Equations and Applications, 11(1) (2005), 63-81. [21] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Analysis: Real World Applications, 7(3) (2006), 395-413. [22] L. Stefanini, A generalization of hukuhara di erence and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161(11) (2010), 1564-1584. [23] L. Stefanini, B. Bede, Generalized hukuhara di erentiability of interval-valued functions and interval di erential equations, Nonlinear Analysis: Theory, Methods and Applications, 71(3-4) (2009), 1311-1328. [24] T. Truong, L. Nguyen, B. Schneider, On the partial delta di erentiability of fuzzy-valued functions via the generalized hukuhara di erence, Computational and Applied Mathematics, 40(6) (2021), 1-29. [25] A. Ullah, S. Ahmad, N. Van Hoa, Fuzzy Yang transform for second order fuzzy di erential equations of integer and fractional order, Physica Scripta, 98(4) (2023), 044003. [26] C. Vasavi, G. S. Kumar, M. Murty, Generalized di erentiability and integrability for fuzzy set-valued functions on time scales, Soft Computing, 20(3) (2016), 1093-1104. [27] C. Wang, R. P. Agarwal, D. O’Regan, Almost periodic fuzzy multidimensional dynamic systems and applications on time scales, Chaos, Solitons and Fractals, 156 (2022), 111781. [28] H. Wang, R. Rodr´ıguez-L´opez, Boundary value problems for interval-valued di erential equations on unbounded domains, Fuzzy Sets and Systems, 436 (2022), 102-127. [29] H. Wang, R. Rodr´ıguez-L´opez, On the rst-order autonomous interval-valued di erence equations under gh- di erence, Iranian Journal of Fuzzy Systems, 20(2) (2023), 21-32. [30] D. Zhao, G. Ye, W. Liu, D. F. Torres, Some inequalities for interval-valued functions on time scales, Soft Computing, 23(15) (2019), 6005-6015. | ||
آمار تعداد مشاهده مقاله: 516 تعداد دریافت فایل اصل مقاله: 544 |