
تعداد نشریات | 33 |
تعداد شمارهها | 764 |
تعداد مقالات | 7,395 |
تعداد مشاهده مقاله | 12,232,093 |
تعداد دریافت فایل اصل مقاله | 8,348,089 |
Approximate Reasoning Based on Similarity of Z-numbers | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 1، فروردین و اردیبهشت 2024، صفحه 159-172 اصل مقاله (607.61 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.46303.8170 | ||
نویسندگان | ||
R.A. Aliev* 1؛ Witold Pedrycz2؛ Oleg Huseynov3؛ Rafig Aliyev4؛ B. G. GUIRIMOV5 | ||
1ASOIU | ||
2Department of Electrical & Computer Engineering, University of Alberta, Edmonton | ||
3Department of Computer-Aided Control Systems, Azerbaijan State Oil Academy, 20 Azadlig Ave., AZ1010 Baku, Azerbaijan | ||
4Research Laboratory of Intelligent Control and Decision Making Systems in Industry and Economics, Azerbaijan State Oil and Industry University, 20 Azadlig Ave., AZ1010, Baku, Azerbaijan | ||
5DEPARTMENT OF COMPUTER-AIDED CONTROL SYSTEMS, AZERBAIJAN STATE OIL ACADEMY, BAKU, AZERBAIJAN | ||
چکیده | ||
The concept of Z-number was introduced by Zadeh in order to deal with partial reliability of information. This concept describes a fusion of fuzzy and probabilistic types of uncertainty. In turn, one of the main fields of dealing with imperfect information is approximate reasoning. For the case of pure fuzzy information this field is well-developed. In contrast, existing studies on reasoning with Z-valued “if-then” rules are scarce. One of the main reasons is high analytical and computational complexity. In this work, we develop an approach to reasoning with such kind of rules. The original approach proposed here allows to deal with sparse rule base and is characterized by relatively low computational complexity. The new concept of similarity of Z-numbers based on Jaccard similarity index and measure of divergence of probability distributions is introduced. Based on similarity degrees of current input Z-numbers and Z-numbers located in rule antecedents, weights of linear combination of Z-numbers in rule consequents are determined. The linear combination is based on operations with Z-numbers proposed by authors. Applications of the proposed approach to evaluation of economic development level for a country and control problem are considered. | ||
کلیدواژهها | ||
If-Then rules؛ fuzzy number؛ probability density function؛ reliability | ||
مراجع | ||
[1] R. H. Abiyev, Dynamic system control using Z-number based fuzzy neural network. In: C. Kahraman, S. Cevik Onar, B. Oztaysi, I. Sari, S. Cebi, A. Tolga, (eds) Intelligent and Fuzzy Techniques: Smart and Innovative Solutions. (Proceedings of International Conference on Intelligent and Fuzzy Systems, INFUS 2020, July 2020, Istanbul. Advances in Intelligent Systems and Computing, 1197, 964-72. DOI:10.1007/978-3-030-51156-2 112. [2] R. H. Abiyev, I. S. Gunsel, N. Akkaya, E. Aytac, A. C agman, S. Abizada, Fuzzy control of omnidirectional robot, Procedia Computer Science, 120 (2017), 608-616. DOI:10.1016/j.procs.2017.11.286. [3] R. A. Aliev, F. Aliev, M. Babaev, Fuzzy process control and knowledge engineering in petrochemical and robotic manufacturing, Verlag, 1991. [4] R. A. Aliev, A. V. Alizadeh, O. H. Huseynov, The arithmetic of discrete Z-numbers, Information Sciences, 290 (2015), 134-155. DOI: 10.1016/j.ins.2014.08.024. [5] R. A. Aliev, O. H. Huseynov, L. M. Zeinalova, The arithmetic of continuous Z-numbers, Information Sciences, 373 (2016), 441-460. DOI: 10.1016/j.ins.2016.08.078. [6] R. A. Aliev, W. Pedrycz, O. H. Huseynov, R. R. Aliyev, Eigensolutions of partially reliable decision preferences described by matrices of Z-numbers, International Journal of Information Technology and Decision Making, 19(06) (2020), 1429-1450. DOI:10.1142/s0219622020500340. [7] R. A. Aliev, W. Pedrycz, O. H. Huseynov, S. Z. Eyupoglu, Approximate reasoning on a basis of Z-number-valued \If-Then" rules, IEEE Transactions on Fuzzy Systems, 25(6) (2017), 1589-600. DOI:10.1109/tfuzz.2016.2612303. [8] R. A. Aliev, A. Tserkovny, Systemic approach to fuzzy logic formalization for approximate reasoning, Information Sciences, 181(6) (2011), 1045-1059. DOI:10.1016/j.ins.2010.11.021. [9] R. Banerjee, S. K. Pal, J. K. Pal, A decade of the Z-numbers, IEEE Transactions on Fuzzy Systems, 30(8) (2022), 2800-2812. DOI:10.1109/tfuzz.2021.3094657. [10] S. M. Chen, D. Barman, Adaptive fuzzy interpolative reasoning based on similarity measures of polygo- nal fuzzy sets and novel move and transformation techniques, Information Sciences, 489 (2019), 303-315. DOI:10.1016/j.ins.2019.03.034. [11] Y. Donyatalab, F. Kutlu Gundogdu, F. Farid, S. A. Sey -Shishavan, E. Farrokhizadeh, C. Kahraman, Novel spherical fuzzy distance and similarity measures and their applications to medical diagnosis, Expert Systems with Applications, 191 (2022). DOI:10.1016/j.eswa.2021.116330. [12] J. Duan, X. Li, Similarity of intuitionistic fuzzy sets and its applications, International Journal of Approximate Reasoning, 137 (2021), 166-180. DOI:10.1016/j.ijar.2021.07.009. [13] Z. Feng, C. Liu, H. Huang, Knowledge modeling based on interval-valued fuzzy rough set and similarity inference: Prediction of welding distortion, Journal of Zhejiang University-Science C, 15 (2014), 636-650. DOI:10.1631/jzus.c1300370. [14] E. Hanyu, Y. Cui, W. Pedrycz, A. Robinson Fayek, Z. Li, J. Li, Design of fuzzy rule-based models with fuzzy relational factorization, Expert Systems with Application, (2022). DOI: 10.1016/j.eswa.2022.117904. [15] L. Jiao, Q. Pan, T. Denux, Y. Liang, X. Feng, Belief rule-based classi cation system: Extension of FRBCS in belief functions framework, Information Sciences, 309 (2015), 26-49. DOI: 10.1016/j.ins.2015.03.005. [16] I. U. Karim, M. F. Akkash, S. Raha, Approximate reasoning with fuzzy soft set, Iranian Journal of Fuzzy Systems, 19(4) (2022), 107-124. DOI: 10.22111/ijfs.2022.7090. [17] Y. W. Kerk, K. M. Tay, C. P. Lim, Monotone fuzzy rule interpolation for practical modeling of the zero-order TSK fuzzy inference system, IEEE Transactions on Fuzzy Systems, 30(5) (2022), 1248-1259. DOI:10.1109/tfuzz.2021.3057239. [18] J. Kerr-Wilson, W. Pedrycz, Generating a hierarchical fuzzy rule-based model, Fuzzy Sets and Systems, 381 (2020), 124-139. DOI:10.1016/j.fss.2019.07.013. [19] L. T. Koczy, K. Hirota, Approximate reasoning by linear rule interpolation and general approximation, International Journal of Approximate Reasoning, 9(3) (1993), 197-225. DOI:10.1016/0888-613x(93)90010-b. [20] S. Kullback, R. A. Leibler, On information and suciency, The Annals of Mathematical Statistics, 22(1) (1951), 79-86. DOI: 10.1214/aoms/1177729694. [21] Y. Li, X. Hu , W. Pedrycz, F. Yang, Z. Liu, Multivariable fuzzy rule-based models and their granular generalization: A visual interpretable framework, Applied Soft Computing, 134 (2023). DOI:10.1016/j.asoc.2022.109958. [22] J. Li, Y. Liu, Property analysis of triple implication method for approximate reasoning on Atanassov's intuitionistic fuzzy sets, Iranian Journal of Fuzzy Systems, 15(5) (2018), 95-116. DOI: 10.22111/ijfs.2018.4161. [23] M. Luo, Y. Wang, R. Zhao, Interval-valued fuzzy reasoning method based on similarity measure, Journal of Logical and Algebraic Methods in Programming, 113 (2020). DOI:10.1016/j.jlamp.2020.100541. [24] H. Lv, F. Li, C. Shang, Q. Shen, W-Infer-polation: Approximate reasoning via integrating weighted fuzzy rule inference and interpolation, Knowledge-Based Systems, 258 (2022). DOI:10.1016/j.knosys.2022.109995. [25] A. H. Meghdadi, T. M. R. Akbarzadeh, Probabilistic fuzzy logic and probabilistic fuzzy systems, 10th IEEE International Conference on Fuzzy Systems (Cat No01CH37297), (2001). DOI:10.1109/fuzz.2001.1008853. [26] F. Nielsen, On the Jensen-Shannon symmetrization of distances relying on abstract means, Entropy, 21(5) (2019), 485. DOI:10.3390/e21050485. [27] A. Pal, B. Mondal, N. Bhattacharyya, S. Raha, Similarity in fuzzy systems, Journal of Uncertainty Analysis and Applications, 2(1) (2014). DOI: 10.1186/s40467-014-0018-0. [28] W. Pedrycz, Granular computing: Analysis and design of intelligent systems (Industrial Electronics), London: CRC Press, 2017. [29] W. Pedrycz, Granular modeling for the realization of fundamentals of control, systems analysis, and decision making, Studies in Systems, Decision and Control, (2022), 3-25. DOI: 10.1007/978-3-030-99776-2-1. [30] W. Pedrycz, F. Gomide, Fuzzy systems engineering: Toward human-centric computing, New Jersey: Wiley-IEEE Press; 2007. DOI:10.1002/9780470168967. [31] S. Raha, A. Hossain, S. Ghosh, Similarity based approximate reasoning: Fuzzy control, Journal of Applied Logic, 6(1) (2008), 47-71. DOI: 10.1016/j.jal.2007.01.001. [32] G. Stojic, Using fuzzy logic for evaluating the level of countries' (Regions') economic development, Panoeconomicus, 3 (2012), 293-310. DOI: 10.2298/PAN1203293S. [33] Y. Tang, F. Ren, Universal triple I method for fuzzy reasoning and fuzzy controller, Iranian Journal of Fuzzy Systems, 10(5) (2013), 1-24. DOI: 10.22111/ijfs.2013.1204. [34] T. Vetterlein, A. Zamansky, Reasoning with graded information: The case of diagnostic rating scales in healthcare, Fuzzy Sets and Systems, 298 (2016), 207-221. DOI:10.1016/j.fss.2015.11.002. [35] Q. Wang, Z. Su, B. Rezaee, P. Wang, Constructing T-S fuzzy model from imprecise and uncertain knowledge represented as fuzzy belief functions, Neurocomputing, 166 (2015), 319-336. DOI: 10.1016/j.neucom.2015.03.068. [36] R. R. Yager, On theory of approximate reasoning, SBA Controle and Automacao, 4 (1994), 116-125.
[37] L. Yang, Q. Shen, Adaptive fuzzy interpolation, IEEE Transactions on Fuzzy Systems, 19(6) (2011), 1107-1126. DOI: 10.1109/tfuzz.2011.2161584. [38] L. A. Zadeh, Fuzzy logic and approximate reasoning, Synthese, 30(3-4) (1975), 407-28. DOI: 10.1007/bf00485052.
[39] L. A. Zadeh, Interpolative reasoning in fuzzy logic and neural network theory, [1992 Proceedings] IEEE International Conference on Fuzzy Systems, (1992). DOI: 10.1109/fuzzy.1992.258757. [40] L. A. Zadeh, A note on Z-numbers, Information Science, 181 (2011), 2923-2932. DOI: 10.1016/j.ins.2011.02.022.
[41] P. Zhang, C. Shang, Q. Shen, Fuzzy rule interpolation with K-neighbors for TSK models, IEEE Transactions on Fuzzy Systems, 30(10) (2022), 4031-4043. DOI:10.1109/tfuzz.2021.3136359. [42] H. J. Zimmermann, Fuzzy set theory and its applications, Springer, 2001, 514 pages. DOI:10.1007/978-94-010-0646- 0. | ||
آمار تعداد مشاهده مقاله: 386 تعداد دریافت فایل اصل مقاله: 541 |