
تعداد نشریات | 33 |
تعداد شمارهها | 770 |
تعداد مقالات | 7,474 |
تعداد مشاهده مقاله | 12,463,448 |
تعداد دریافت فایل اصل مقاله | 8,475,948 |
Type-3 Fuzzy System for Dynamic System Control | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 3، مرداد و شهریور 2024، صفحه 65-76 اصل مقاله (1.13 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.47267.8330 | ||
نویسندگان | ||
R.A. Aliev* 1؛ S.R. Abizada2؛ Rahib Abiyev3 | ||
1ASOIU | ||
2Department of Electrical and Electronic Engineering, AAIRC, Mersin-10, Lefkosa, North Cyprus, Turkey | ||
3Department of Computer Engineering, AAIRC, Mersin-10, Lefkosa, North Cyprus, Turkey | ||
چکیده | ||
Many dynamic processes are characterized by parametric or structural uncertainties due to internal and external disturbances. Existing deterministic models could not handle the uncertainties inherent in these processes. A valuable alternative to control these processes is the use of a type-3 fuzzy system. Since type-3 fuzzy systems use threedimensional membership functions, they have more capacity to model uncertainties. This paper introduces the design of a type-3 fuzzy logic system (FLS) for the control of dynamic plants. Utilizing type-3 fuzzy logic, the architecture of the type-3 fuzzy control system (T3FCS) is proposed. The knowledge base of the controller is constructed and its design stages are presented. The inference mechanism of type-3 FLS is developed using α slices and interval type-3 membership functions. The proposed type-3 FLS is utilized for controlling nonlinear dynamic plants. The modeling of the proposed T3FCS is performed and transient response characteristic is derived using different stepwise excitation signals. A comparison of the designed system with the type-1 FLS-based system is provided. The obtained simulation result demonstrates the efficiency of using the proposed type-3 FLS in the control of dynamic systems characterized by uncertainties. | ||
کلیدواژهها | ||
Fuzzy controller؛ Type-3 membership function؛ type-3 fuzzy logic؛ control system | ||
مراجع | ||
[1] R. H. Abiyev, S. Abizada, Type-2 fuzzy wavelet neural network for estimation energy performance of residential buildings, Soft Computing, 25(16) (2021), 11175-11190. https://doi.org/10.1007/s00500-021-05873-4 [2] R. H. Abiyev, R. Aliev, O. Kaynak, Z-number based fuzzy neural network for system identification, Journal of Intelligent and Fuzzy Systems, 45(6) (2023), 11203-11216. https://doi.org/10.3233/JIFS-232741 [3] R. H. Abiyev, O. Kaynak, T. Alshanableh, F. Mamedov, A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization, Applied Soft Computing, 11(1) (2011), 1396-1406. https://doi.org/10.1016/j.asoc.2010.04.011 [4] R. A. Aliev, W. Pedrycz, B. G. Guirimov, R. R. Aliev, U. Ilhan, M. Babagil, S. Mammadli, Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization, Information Sciences, 181(9) (2011), 1591- 1608. https://doi.org/10.1016/j.ins.2010.12.014 [5] L. Amador-Angulo, O. Castillo, P. Melin, J. R. Castr, Interval type-3 fuzzy adaptation of the bee colony optimization algorithm for optimal fuzzy control of an autonomous mobile robot, Micromachines, 13 (2022). https://doi.org/ 10.3390/mi13091490 [6] Y. Becerikli, B. K. Celik, Fuzzy control of inverted pendulum and concept of stability using Java application, Mathematical and Computer Modelling, 46 (2007), 24-37. https://doi.org/10.1016/j.mcm.2006.12.004
[7] O. Castillo, J. R. Castro, P. Melin, Interval type-3 fuzzy aggregation of neural networks for multiple time series prediction: The case of financial forecasting, Axioms, 11(6) (2022). https://doi.org/10.3390/axioms11060251 [8] O. Castillo, J. R. Castro, P. Melin, Interval type-3 fuzzy fractal approach in sound speaker quality control evaluation, Engineering Applications of Artificial Intelligence, 116 (2022). https://doi.org/10.3390/axioms11060251 [9] O. Castillo, P. Melin, Type-3 fuzzy theory, In: Type-3 Fuzzy Logic in Intelligent Control. Briefs in Applied Sciences and Technology. Springer, Cham., (2023), 5-15. https://doi.org/10.1007/978-3-031-46088-3_2 [10] R. Chi, H. Li, D. Shen, Z. Hou, B. Huang, Enhanced P-type control: Indirect adaptive learning from set-point updates, IEEE Transactions on Automatic Control, 68(3) (2023), 1600-1613. https://doi.org/10.1109/TAC.2022. 3154347 [11] M. El-Bardini, A. El-Nagar, Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system, ISA Transaction, 53 (2014), 732-743. https://doi.org/10.1016/j.isatra.2014.02.007 [12] M. Gheisarnejad, A. Mohammadzadeh, M. H. Khooban, Model predictive control based type-3 fuzzy estimator for voltage stabilization of DC power converters, IEEE Transactions on Industrial Electronics, 69(12) (2022). https: //doi.org/10.1109/TIE.2021.3134052 [13] H. Huang, H. Xu, F. Chen, C. Zhang, A. Mohammadzadeh, An applied type-3 fuzzy logic system: Practical matlab simulink and M-files for robotic, control, and modeling applications, Symmetry, 15 (2023). https://doi.org/10. 3390/sym15020475 [14] C. Hwang, F. C. H. Rhee, Uncertain fuzzy clustering: Interval type-2 fuzzy approach to C-means, IEEE Transactions on Fuzzy Systems, 15(1) (2007), 107-120. https://doi.org/10.1109/TFUZZ.2006.889763 [15] N. N. Karnik, J. M. Mendel, Application of type-2 fuzzy logic systems to forecasting of time-series, Information Sciences, 120 (1999), 89-111. https://doi.org/10.1016/S0020-0255(99)00067-5 [16] Z. Liu, A. Mohammadzadeh, H. Turabieh, M. Mafarja, S. S. Band, A. Mosavi, A new online learned interval type-3 fuzzy control system for solar energy management systems, IEEE Access, 9 (2021), 10498-10508. https: //doi.org/10.1109/ACCESS.2021.3049301 [17] C. Ma, A. Mohammadzadeh, H. Turabieh, M. Mafarja, S. S. Band, A. Mosavi, Optimal type-3 fuzzy system for solving singular multi-pantograph equations, IEEE Access, (2020), 225692-225702. https://doi.org/10.1109/ ACCESS.2020.3044548 [18] M. Mendel, Uncertain rule-based fuzzy logic system: Introduction and new directions, Prentice Hall, Upper Saddle River, NJ, 2001. [19] G. M. Mendez, I. L. Juarez, P. N. Montes-Dorantes, M. A. Garcia, A new method for the design of interval type-3 fuzzy logic systems with uncertain type-2 non-singleton inputs (IT3 NSFLS-2): A case study in a hot strip Mill, IEEE Access, 11 (2023), 44065-44081. https://doi.org/10.1109/ACCESS.2023.3272531 [20] A. Mohammadzadeh, M. H. Sabzalian, W. Zhang, An interval type-3 fuzzy system and a new online fractionalorder learning algorithm: Theory and practice, IEEE Transactions on Fuzzy Systems, 28(9) (2020), 1940-1950. https://doi.org/10.1109/TFUZZ.2019.2928509 [21] W. Pedrycz, Fuzzy sets of higher type and higher order in fuzzy modeling, in Frontiers of Higher Order Fuzzy Sets, A. Sadeghian and H. Tahayori, Eds., New York, NY, USA: Springer, (2015), 31-49. https://doi.org/10.1007/ 978-1-4614-3442-9_3 [22] J. T. Rickard, J. Aisbett, G. Gibbon, Fuzzy subsethood for fuzzy sets of type-2 and generalized type-n, IEEE Transactions on Fuzzy Systems, 17(1) (2009), 50-60. https://doi.org/10.1109/TFUZZ.2008.2006369 [23] R. C. Roman, R. E. Precup, E. M. Petriu, A. I. Borlea, Hybrid data-driven active disturbance rejection sliding mode control with tower crane systems validation, Romanian Journal of Information Science and Technology, 27(1) (2024), 50-64. https://doi.org/10.59277/ROMJIST.2024.1.04 [24] D. J. Singh, N. K. Verma, A. K. Ghosh, A. Malagaudanavar, An approach towards the design of interval type-3 T-S fuzzy system, IEEE Transactions on Fuzzy Systems, 30(9) (2022), 3880-3893. https://doi.org/10.1109/TFUZZ. 2021.3133083 [25] A. Tarafdar, P. Majumder, U. K. Bera, Prediction of air quality index in Kolkata city using an advanced learned interval type-3 fuzzy logic system, 2023 IEEE 8th International Conference for Convergence in Technology (I2CT) Pune, India, (2023), 7-9. https://doi.org/10.1109/I2CT57861.2023.10126430 [26] J. H. Wang, J. Tavoosi, A. Mohammadzadeh, S. Mobayen, J. H. Asad, W. Assawinchaichote, M. T. Vu, P. Skruch, Non-singleton type-3 fuzzy approach for flowmeter fault detection: Experimental study in a gas industry, Sensors, 21 (2021), 7419. https://doi.org/10.3390/s21217419 [27] L. A. Zadeh, The concept of linguistic variable and it’s application to approximate reasoning, Information Sciences, 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5 | ||
آمار تعداد مشاهده مقاله: 367 تعداد دریافت فایل اصل مقاله: 3,426 |