تعداد نشریات | 31 |
تعداد شمارهها | 710 |
تعداد مقالات | 6,925 |
تعداد مشاهده مقاله | 11,392,054 |
تعداد دریافت فایل اصل مقاله | 7,763,164 |
Convergence structures in L-concave spaces | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 4، مهر و آبان 2024، صفحه 61-80 اصل مقاله (487.07 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.48804.8608 | ||
نویسندگان | ||
Xiancheng Han1؛ Bin Pang* 2 | ||
1Beijing Institute of Technology | ||
2School of Mathematics, Beijing Institute of Technology | ||
چکیده | ||
Considering a complete residuated lattice L as the lattice background, the concept of (preconcave, concave) L-convergence spaces via L-ordered co-Scott closed sets is introduced and its diagonal axioms are proposed. It is shown that concave L-convergence spaces are isomorphic to strong L-concave spaces in a categorical viewpoint. Also, it is proved that a preconcave L-convergence space satisfies the Kowalsky diagonal axiom if and only if it is concave, and an L-convergence space satisfies the Fischer diagonal axiom if and only if it is concave. | ||
کلیدواژهها | ||
L-convex space؛ L-concave space؛ L-convergence space؛ L-ordered co-Scott closed set؛ Diagonal axiom | ||
مراجع | ||
[1] R. Bˇelohl´avek, Fuzzy relational systems: Foundations and principles, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2002. https://doi.org/10.1007/978-1-4615-0633-1 [2] L. Fan, A new approach to quantitative domain theory, Electronic Notes in Theoretical Computer Science, 45 (2001), 77-87. https://doi.org/10.1016/S1571-0661(04)80956-3 [3] J. M. Fang, Stratified L-ordered convergence structures, Fuzzy Sets and Systems, 161 (2010), 2130-2149. https: //doi.org/10.1016/j.fss.2020.06.007 [4] J. M. Fang, Y. L. Yue, ⊤-diagonal conditions and continuous extension theorem, Fuzzy Sets and Systems, 321 (2017), 73-89. https://doi.org/10.1016/j.fss.2016.09.003 [5] H. R. Fischer, Limesr¨aume, Mathematische Annalen, 137 (1959), 269-303. https://doi.org/10.1007/BF01360965
[6] Y. Gao, B. Pang, Subcategories of the category of ⊤-convergence spaces, Hacettepe Journal of Mathematics and Statistics, 53 (2024), 88-106. https://doi.org/10.15672/hujms.1205089 [7] D. Hofomann, G. J. Seal, W. Tholen, Monodial topology: A categorical approach to order, metric, and topology, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014. [8] U. H¨ohle, Meach valued topology and its applications, Kluwer Academic Publishers, Boston, 2001.
[9] U. H¨ohle, A. ˇSostak, Axiomatic foundations of fixed-basis fuzzy topology, in: U. H¨ohle, S.E. Rodabaugh (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, (1999), 123-273. [10] G. J¨ager, A category of L-fuzzy convergence spaces, Quaestiones Mathematicae, 24 (2001), 501-517. https://doi. org/10.1080/16073606.2001.9639237 [11] G. J¨ager, Pretopological and topological lattice-valued convergence spaces, Fuzzy Sets and Systems, 158 (2007), 424-435. https://doi.org/10.1016/j.fss.2006.10.016 [12] G. J¨ager, Fischer’s diagonal condition for lattice-valued convergence spaces, Quaestiones Mathematicae, 31 (2008), 11-25. https://doi.org/10.2989/QM.2008.31.1.2.407 [13] H. J. Kowalsky, Limesr¨aume und Komplettierung, Mathematische Nachrichten, 12 (1954), 301-340.
[14] M. Lassak, On metric B-convexity for which diameters of any set and its hull are equal, Bulletin de L’Academie Polonaise des Sciences, 25 (1977), 969-975. [15] L. Q. Li, Q. Jin, On stratified L-convergence spaces: Pretopological axioms and diagonal axioms, Fuzzy Sets and Systems, 204 (2012), 40-52. https://doi.org/10.1016/j.fss.2012.02.012 [16] L. Q. Li, Q. Jin, p-topologicalness and p-regularity for lattice-valued convergence spaces, Fuzzy Sets and Systems, 238 (2014), 26-45. https://doi.org/10.1016/j.fss.2013.08.012 [17] H. Y. Li, K. Wang, L-ordered neighborhood systems of stratified L-concave structures, Journal of Nonlinear and Convex Analysis, 21 (2020), 2783-2793. [18] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164 (2009), 22-37.
[19] B. Pang, On (L,M)-fuzzy convergence spaces, Fuzzy Sets and Systems, 238 (2014), 46-70. https://doi.org/10. 1016/j.fss.2013.07.007 [20] B. Pang, Fuzzy convexities via overlap functions, IEEE Transactions on Fuzzy Systems, 31 (2023), 1071-1082. https://doi.org/10.1109/TFUZZ.2022.3194354 [21] B. Pang, F. G. Shi, Strong inclusion orders between L-subsets and its applications in L-convex spaces, Quaestiones Mathematicae, 41 (2018), 1021-1043. https://doi.org/10.2989/16073606.2018.1436613 [22] B. Pang, Y. Zhao, Characterizations of L-convex spaces, Iranian Journal of Fuzzy Systems, 13 (2016), 51-61. https://doi.org/10.22111/ijfs.2022.7159 [23] S. E. Rodabaugh, Categorical foundations of fixed-basis fuzzy topology, in: U. H¨ohle, S.E. Rodabaugh et al. (Eds.), Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory, The Handbook of Fuzzy Sets Series, Vol. 3, Kluwer Academic Publishers, Boston, Dordrecht, London, (1999), 273-388. [24] M. V. Rosa, On fuzzy topology fuzzy convexity spaces and fuzzy local convexity, Fuzzy Sets and Systems, 62 (1994), 97-100. https://doi.org/10.1016/0165-0114(94)90076-0 [25] C. Shen, Y. Shi, F. G. Shi, H. Andradi, Characterizations of pointwise pseudo-metrics via pointwise closed-ball systems, IEEE Transactions on Fuzzy Systems, 30(5) (2021), 1212-1223. https://doi.org/10.1109/TFUZZ.2021. 3054466 [26] F. G. Shi, Pointwise metrics in fuzzy set theory, Fuzzy Sets and Systems, 121 (2001), 209-216. https://doi.org/ 10.1016/S0165-0114(00)00013-0 [27] F. G. Shi, Z. Y. Xiu, A new approach to the fuzzification of convex structures, Journal of Applied Mathematics, 2014 (2014), 1-12. https://doi.org/10.1155/2014/249183 [28] F. G. Shi, Z. Y. Xiu, (L,M)-fuzzy convex structures, Journal of Nonlinear Sciences and Applications, 10 (2017), 3655-3669. https://doi.org/10.22436/jnsa.010.07.25 [29] V. P. Soltan, d-convexity in graphs, Soviet Mathematics - Doklady, 28 (1983), 419-421.
[30] M. L. J. Van de Vel, Theory of convex structures, North-Holland, Amsterdam, 1993.
[31] J. C. Varlet, Remarks on distributive lattices, Bulletin L’Acad´emie Polonaise des Science, 23 (1975), 1143-1147.
[32] X. Y. Wu, F. G. Shi, L-concave bases and L-topological-concave spaces, Journal of Intelligent and Fuzzy Systems, 35 (2018), 4731-4743. https://doi.org/10.3233/JIFS--181286 [33] Z. Y. Xiu, Convergence structures in L-concave spaces, Journal of Nonlinear and Convex Analysis, 21(12) (2020), 2693-2703. [34] W. Yao, Quantitative domains via fuzzy sets: Part I: Continuity of fuzzy directed complete posets, Fuzzy Sets and Systems, 161 (2010), 973-987. https://doi.org/10.1016/j.fss.2009.06.018 [35] W. Yao, An approach to fuzzy frames via fuzzy posets, Fuzzy Sets and Systems, 166 (2011), 75-89. https://doi. org/10.1016/j.fss.2010.11.010 [36] L. Zhang, B. Pang, Strong L-concave structures and L-convergence structures, Journal of Nonlinear and Convex Analysis, 21 (2020), 2759-2769. [37] L. Zhang, B. Pang, A new approach to lattice-valued convergence groups via ⊤-filters, Fuzzy Sets and Systems, 455 (2023), 198-221. https://doi.org/10.1016/J.FSS.2022.06.026 [38] L. Zhang, B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat, 37 (2023), 2859-2877. https: //doi.org/10.2298/FIL2309859Z | ||
آمار تعداد مشاهده مقاله: 136 تعداد دریافت فایل اصل مقاله: 137 |