
تعداد نشریات | 32 |
تعداد شمارهها | 748 |
تعداد مقالات | 7,264 |
تعداد مشاهده مقاله | 11,978,904 |
تعداد دریافت فایل اصل مقاله | 8,168,430 |
A Novel Extended Approach to Evaluate Criteria Weights in MADM Problems in Fuzzy Framework | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 4، مهر و آبان 2024، صفحه 101-122 اصل مقاله (599.19 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.48112.8479 | ||
نویسندگان | ||
Jalal Chachi1؛ Ahmad Kazemifard* 2 | ||
1Department of Statistics, Shahid Chamran University of Ahvaz, Ahvaz 83151-61355, Iran | ||
2Faculty of Mathematical Sciences and Computer, Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran | ||
چکیده | ||
Determining weights of criteria is a pivotal challenge that arises in Multi-Attribute Decision Making (MADM) problems. Different methods have been suggested in the literature which can be classified into three main categories: subjective, objective and integrated. Especially when the decision maker does not have a specific judgment regarding the weights of the criteria of the decision problem or the number of criteria is large, the methods based on pairwise comparisons are not effective due to the large number of required judgments as well as the natural increase in inconsistency in the judgments. In this paper, we propose an integrated model to determine criteria weights in MADM problems while combining the Ordered Weighted Average (OWA) Yager, entropy, fuzzy/crisp initial decision maker's judgments about the preferences of alternatives, and the information of decision matrix. In this regard, by considering a decision matrix, we formulate the idea as an optimization problem including an extended TOPSIS, L-p metric and $\widetilde{L-p}$ metric, or goal programming model in order to provide an extension of OWA operator and entropy method, simultaneously. Then, we use the proposed method in a real-world dataset to evaluate the priorities of mining opportunities in 17 provinces of Iran (including 235 alternatives by considering 48 criteria). In this regard, a comprehensive list of economic, political, social, strategic and environmental criteria has been used. A full analysis is performed to illustrate the application of the technique that stems from our approach. Finally, we compare the results that we obtain with the results from existing approaches, including Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Simple Additive Weighting (SAW) method and Yager. In this way the accuracy and effectiveness of the presented work is conclusively validated. | ||
کلیدواژهها | ||
OWA operators؛ Fuzzy preferences؛ Constrained OWA optimization؛ L-p metirc and Goal Programing؛ Multi-attribute decision making (MADM) | ||
مراجع | ||
[1] B. S. Ahn, Preference relation approach for obtaining OWA operators weights, International Journal of Approximate Reasoning, 47 (2008), 166-178. https://doi.org/10.1016/j.ijar.2007.04.001 [2] B. S. Ahn, A new approach to solve the constrained OWA aggregation problem, IEEE Transactions on Fuzzy Systems, 25 (2017), 1231-1238. https://doi.org/10.1109/TFUZZ.2016.2604006 [3] M. Akram, S. Shumaiza, Multi-criteria decision making based on q-rung orthopair fuzzy promethee approach, Iranian Journal of Fuzzy Systems, 18 (2021), 107-127. https://doi.org/10.22111/IJFS.2021.6258 [4] A. T. Almeida, E. A. Frej, L. R. P. Roselli, A. P. C. S. Costa, A summary on fitradeoff method with methodological and practical developments and future perspectives, Pesquisa Operacional, 43 (2023), e268356. https://doi.org/ 10.1590/0101-7438.2023.043spe1.00268356 [5] A. Arya, S. P. Yadav, A new approach to rank the decision making units in presence of infeasibility in intuitionistic fuzzy environment, Iranian Journal of Fuzzy Systems, 17 (2020), 183-199. https://doi.org/10.22111/IJFS. 2020.5228 [6] G. Beliakov, A method of introducing weights into OWA operators and other symmetric functions, Springer International Publishing, Cham, 2017, pages 37-52. https://doi.org/10.1007/978-3-319-51052-1_3
[7] O. Bozorg-Haddad, B. Zolghadr-Asli, H. A. Lo´aiciga, A handbook on multi-attribute decision-making methods, John Wiley and Sons, 2021. https://doi.org/10.1002/9781119563501 [8] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, NY, 2011. https://doi.org/10.1007/978-0-387-70914-7 [9] O. Castillo, P. Melin, J. Kacprzyk, W. Pedrycz, Type-2 fuzzy logic: Theory and applications, In 2007 IEEE International Conference on Granular Computing (GRC 2007), pages 145-145, 2007. https://doi.org/10.1007/ 978-3-540-76284-3 [10] J. Chachi, A. Chaji, An OWA-based approach to quantile fuzzy regression, Computers and Industrial Engineering, 159 (2021), 107498. https://doi.org/10.1016/j.cie.2021.107498 [11] J. Chachi, A. Kazemifard, M. Jalalvand, A multi-attribute assessment of fuzzy regression models, Iranian Journal of Fuzzy Systems, 18 (2021), 131-148. https://doi.org/10.22111/IJFS.2021.6181 [12] A. R. Chaji, Analytic approach on maximum bayesian entropy ordered weighted averaging operators, Computers and Industrial Engineering, 105 (2017), 260-264. https://doi.org/10.1016/j.cie.2016.12.041 [13] A. R. Chaji, H. Fukuyama, R. K. Shiraz, Selecting a model for generating OWA operator weights in magdm problems by maximum entropy membership function, Computers and Industrial Engineering, 124 (2018), 370-378. https://doi.org/10.1016/j.cie.2018.07.040 [14] S. Chakraborty, Topsis and modified topsis: A comparative analysis, Decision Analytics Journal, 2 (2022), 100021. https://doi.org/10.1016/j.dajour.2021.100021 [15] S. Chakraborty, P. Chatterjee, P. P. Das, Simultaneous evaluation of criteria and alternatives (seca) method, In Multi-Criteria Decision-Making Methods in Manufacturing Environments, Apple Academic Press, 2024, pages 325-335. https://doi.org/10.1201/9781003377030-30 [16] S. Dai, Complex fuzzy ordered weighted distance measures, Iranian Journal of Fuzzy Systems, 17 (2020), 107-114. https://doi.org/10.1007/s40314-022-02061-4 [17] S. De La Rosa de S´aa, M. A. Gil, G. Gonz´alez-Rodr´ıguez, M. T. L´opez, M. A. Lubiano, Fuzzy rating scalebased questionnaires and their statistical analysis, IEEE Transactions on Fuzzy Systems, 23 (2015), 111-126. https://doi.org/10.1109/TFUZZ.2014.2307895 [18] L. De Miguel, M. Sesma-Sara, M. Elkano, M. Asiain, H. Bustince, An algorithm for group decision making using n-dimensional fuzzy sets, admissible orders and OWA operators, Information Fusion, 37 (2017), 126-131. https: //doi.org/10.1016/j.inffus.2017.01.007 [19] D. Diakoulaki, G. Mavrotas, L. Papayannakis, Determining objective weights in multiple criteria problems: The critic method, Computers and Operations Research, 22 (1995), 763-770. https://doi.org/10.1016/ 0305-0548(94)00059-H [20] P. D’Urso, J. Chachi, Owa fuzzy regression, International Journal of Approximate Reasoning, 142 (2022), 430-450. https://doi.org/10.1016/j.ijar.2021.12.009 [21] P. D’Urso, J. Chachi, A. Kazemifard, L. De Giovanni, OWA-basedmulti-criteria decisionmaking based on fuzzy methods, Annals of Operations Research, In press, 2024. https://doi.org/10.1007/s10479-024-05926-5 [22] M. El Alaoui, Fuzzy TOPSIS: Logic, approaches, and case studies, CRC Press, 2021. https://doi.org/10.1201/ 9781003168416 [23] J. Garc´ıa-Lapresta, L. Luis, B. Llamazares, T. Pe˜na, Generating OWA weights from individual assessments, pages 135-147. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-17910-5_7 [24] R. Gineviˇcius, A new determining method for the criteria weights in multicriteria evaluation, International Journal of Information Technology and Decision Making, 10 (2011), 1067-1095. https://doi.org/10.1142/ S0219622011004713 [25] I. ´A. Harmati, R. Full´er, I. Felde, On stability of maximal entropy OWA operator weights, Fuzzy Sets and Systems, 448 (2022), 145-156. https://doi.org/10.1016/j.fss.2022.01.003 [26] M. A. Hatefi, Indifference threshold-based attribute ratio analysis: A method for assigning the weights to the attributes in multiple attribute decision making, Applied Soft Computing, 74 (2019), 643-651. https://doi.org/ 10.1016/j.asoc.2018.10.050 [27] M. A. Hatefi, Braw: Block-wise rating the attribute weights in madm, Computers and Industrial Engineering, 156 (2021), 107274. https://doi.org/10.1016/j.cie.2021.107274 [28] M. A. Hatefi, An improved rank order centroid method (iroc) for criteria weight estimation: An application in the engine/vehicle selection problem, Informatica, 34 (2023), 249-270. https://doi.org/10.15388/23-INFOR507 [29] M. A. Hatefi, A typology scheme for the criteria weighting methods in madm, International Journal of Information Technology and Decision Making, 22 (2023), 1439-1488. https://doi.org/10.1142/S0219622022500985 [30] M. A. Hatefi, A new method for weighting decision making attributes: An application in high-tech selection in oil and gas industry, Soft Computing, 28 (2024), 281-303. https://doi.org/10.1007/s00500-023-09282-7 [31] M. A. Hatefi, S. A. Razavi, V. Abiri, A novel multi-attribute model to select appropriate weighting method in decision making, an empirical application in petroleum industry, Group Decision and Negotiation, 32 (2023), 1351-1390. https://doi.org/10.1007/s10726-023-09846-w [32] W. He, B. Dutta, R. M. Rodr´ıguez, A. A. Alzahrani, L. Mart´ınez, Induced OWA operator for group decision making dealing with extended comparative linguistic expressions with symbolic translation, Mathematics, 9 (2021), 20. https://doi.org/10.3390/math9010020 [33] F. Hosseinzadeh Lotfi, T. Allahviranloo, W. Pedrycz, M. Shahriari, H. Sharafi, S. Razipour Ghaleh Jough, The criteria importance through inter-criteria correlation (CRITIC) in uncertainty environment, Springer International Publishing, Cham, 2023, pages 309-324. https://doi.org/10.1007/978-3-031-44742-6_13 [34] G. Ilieva, Fuzzy group full consistency method for weight determination, Cybernetics and Information Technologies, 20 (2020), 50-58. https://doi.org/10.2478/cait-2020-0015 [35] C. Ji, X. Lu, W. Zhang, Development of new operators for expert opinions aggregation: Average-induced ordered weighted averaging operators, Journal of Ambient Intelligence and Humanized Computing, 36 (2021), 997-1014. https://doi.org/10.1002/int.22328 [36] A. Kazemifard, An extension of topsis model based on monotonic utility of criteria, Journal of Advanced Mathematical Modeling, 10 (2020), 196-214. https://doi.org/10.22055/JAMM.2020.27384.1647 [37] A. Kazemifard, J. Chachi, MADM approach to analyse the performance of fuzzy regression models, Journal of Ambient Intelligence and Humanized Computing, 13 (2020), 4019-4031. https://doi.org/10.1007/ s12652-021-03394-4 [38] A. Krylovas, E. K. Zavadskas, N. Kosareva, S. Dadelo, New kemira method for determining criteria priority and weights in solving mcdm problem, International Journal of Information Technology and Decision Making, 13 (2014), 1119-1133. https://doi.org/10.1142/S0219622014500825 [39] S. Kubler, J. Robert, W. Derigent, A. Voisin, Y. Le Traon, A state-of the-art survey and testbed of fuzzy ahp (fahp) applications, Expert Systems with Applications, 65 (2016), 398-422. https://doi.org/10.1016/j.eswa.2016. 08.064 [40] R. Likert, A technique for the measurement of attitudes, Archives of Psychology, 140 (1932), 1-55. https://books. google.com/books?id=9rotAAAAYAAJ [41] B. Liu, Uncertainty theory, 5th edn, Uncertainty Theory Laboratory, Tsinghua University, China, 2024. https: //doi.org/10.1007/978-3-540-73165-8 [42] Y. Liu, Z. Sun, H. Liang, Y. Dong, Ranking range model in multiple attribute decision making: A comparison of selected methods, Computers and Industrial Engineering, 155 (2021), 107180. https://doi.org/10.1016/j.cie. 2021.107180 [43] J. M. Mendel, Type-1 fuzzy sets and fuzzy logic, In Explainable Uncertain Rule-Based Fuzzy Systems, Springer, 2024, pages 17-73. https://doi.org/10.1007/978-3-031-35378-9_2 [44] S. Naz, A. Shafiq, S. A. Butt, Cilos-waspas approach based on schweizer–sklar power operators for evaluating cosmetic brands in a group decision-making environment, Granular Computing, 9 (2024), 1-37. https://doi. org/10.1007/s41066-024-00481-7 [45] W. A. Oliveira, D. J. Fiorotto, X. Song, D. F. Jones, An extended goal programming model for the multiobjective integrated lot-sizing and cutting stock problem, European Journal of Operational Research, 295 (2021), 996-1007. https://doi.org/10.1016/j.ejor.2021.03.049 [46] D. Pamuˇcar, ˇZ. Stevi´c, S. Sremac, A new model for determining weight coefficients of criteria in mcdm models: Full consistency method (fucom), Symmetry, 10 (2018), 393. https://doi.org/10.3390/sym10090393 [47] V. Pandey, Komal, H. Dincer, A review on topsis method and its extensions for different applications with recent development, Soft Computing, 27 (2023), 18011-18039. https://doi.org/10.1007/s00500-023-09011-0 [48] V. Podvezko, E. K. Zavadskas, A. Podviezko, An extension of the new objective weight assessment methods cilos and idocriw to fuzzy mcdm, Economic Computation and Economic Cybernetics Studies and Research, 54 (2022), 59-75. https://doi.org/10.24818/18423264/54.2.20.04 [49] Y. Qin, Q. Qi, P. Shi, S. Lou, P. J. Scott, X. Jiang, Multi-attribute decision-making methods in additive manufacturing: The state of the art, Processes, 11 (2023), 497. https://doi.org/10.3390/pr11020497 [50] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2022. https://www.R-project.org [51] P. Rani, S. M. Chen, A. R. Mishra, Multiple attribute decision making based on mairca, standard deviation-based method, and pythagorean fuzzy sets, Information Sciences, 644 (2023), 119274. https://doi.org/10.1016/j.ins. 2023.119274 [52] R. Rao, Bharat: A simple and effective multi-criteria decision-making method that does not need fuzzy logic, part- 1: Multi-attribute decision-making applications in the industrial environment, International Journal of Industrial Engineering Computations, 15 (2024), 13-40. https://doi.org/10.5267/j.ijiec.2023.12.003 [53] R. Venkata Rao, Introduction to multiple attribute decision-making (madm) methods, Decision Making in the Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods, 2007, pages 27-41. https://doi.org/10.1007/978-1-84628-819-7_3 [54] L. R. P. Roselli, A. T. de Almeida, The use of the success-based decision rule to support the holistic evaluation process in fitradeoff, International Transactions in Operational Research, 30 (2023), 1299-1319. https://doi.org/ 10.1111/itor.12958 [55] H. Royden, P. Fitzpatrick, Real analysis (4th ed.), Pearson, Pearson Modern Classics for Advanced Mathematics Series, 2017. ISBN13:9780131437470 [56] C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, 27 (1948), 379-423 and 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x [57] M. Soltanifar, Improved kemeny median indicator ranks accordance method, Asia-Pacific Journal of Operational Research, 40 (2003), 2250024. https://doi.org/10.1142/S0217595922500245 [58] M. Soltanifar, A. Krylovas, N. Kosareva, Voting-kemeny median indicator ranks accordance method for determining criteria priority and weights in solving multi-attribute decision-making problems, Soft Computing, 27 (2023), 6613- 6628. https://doi.org/10.1007/s00500-022-07807-0 [59] V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems, 25 (2010), 529-539. https://doi.org/ 10.1002/int.20418 [60] W. Wang, J. M. Mendel, Multiple attribute group decision making with linguistic variables and complete unknown weight information, Iranian Journal of Fuzzy Systems, 16 (2019), 145-157. https://doi.org/10.22111/IJFS. 2019.4788 [61] L. Wasserman, All of nonparametric statistics, Springer Texts in Statistics, Springer New York, 2006. https: //doi.org/10.1007/0-387-30623-4 [62] L. Wilkinson, M. Friendly, The history of the cluster heat map, The American Statistician, 63 (2009), 179-184. https://doi.org/10.1198/tas.2009.0033 [63] Z. Xu, Uncertain multi-attribute decision making: Methods and applications, Springer-Verlag, Berlin Heidelberg, 2015. https://doi.org/10.1007/978-3-662-45640-8 [64] Z. Xu, S. Zhang, Fuzzy multi-attribute decision-making: Theory, methods and applications, Springer International Publishing, Cham, 2022, pages 621-658. https://doi.org/10.1007/978-3-030-96935-6_18 [65] R. R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making, IEEE Transactions on Fuzzy Systems, Man and Cybernetics, 18 (1988), 183-190. https://doi.org/10.1109/21.87068 [66] R. R. Yager, On the fusion of multiple multi-criteria aggregation functions with focus on the fusion of OWA aggregations, Knowledge-Based Systems, 191 (2020), 105216. https://doi.org/10.1016/j.knosys.2019.105216 [67] G. L. Yang, J. B. Yang, D. L. Xu, M. Khoveyni, A three-stage hybrid approach for weight assignment in madm, Omega, 71 (2017), 93-105. https://doi.org/10.1016/j.omega.2016.09.011 [68] G. Yari, A. R. Chaji, Determination of ordered weighted averaging operator weights based on the m-entropy measures, International Journal of Intelligent Systems, 27 (2012), 1020-1033. https://doi.org/10.1002/int.21559
[69] G. Yari, A. R. Chaji, Maximum bayesian entropy method for determining ordered weighted averaging operator weights, Computers and Industrial Engineering, 63 (2012), 338-342. https://doi.org/10.1016/j.cie.2012.03. 010 [70] K. P. Yoon, C. L. Hwang, Multiple attribute decision making: An introduction, Sage publications, 1995. https: //doi.org/10.4135/9781412985161 [71] L. A. Zadeh, Fuzzy sets, Informtion Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65) 90241-X [72] M. Zarghami, F. Szidarovszky, Revising the OWA operator for multi criteria decision making problems under uncertainty, European Journal of Operational Research, 198 (2009), 259-265. https://doi.org/10.1016/j.ejor. 2008.09.014 [73] E. K. Zavadskas, J. Antucheviciene, S. Kar, Multi-objective and multi-attribute optimization for sustainable development ecision aiding, Sustainability, 11 (2019), 3069. https://doi.org/10.3390/books978-3-03921-143-2
[74] E. K. Zavadskas, V. Podvezko, Integrated determination of objective criteria weights in mcdm, International Journal of Information Technology and Decision Making, 15 (2016), 267-283. https://doi.org/10.1142/ S0219622016500036 [75] F. Zhou, T. Y. Chen, Multiple criteria group decision analysis using a Pythagorean fuzzy programming model for multidimensional analysis of preference based on novel distance measures, Computers and Industrial Engineering, 148 (2020), 106670. https://doi.org/10.1016/j.cie.2020.106670 [76] H. J. Zimmermann, Fuzzy set theory and its applications, 4th ed., Kluwer Nihoff, Boston, 2001. https://doi.org/ 10.1007/978-94-010-0646-0 [77] M. ˇZiˇzovi´c, D. Pamuˇcar, New model for determining criteria weights: Level based weight assessment (lbwa) model, Decision Making: Applications in Management and Engineering, 2 (2019), 126-137. https://doi.org/10.31181/ dmame1902102z | ||
آمار تعداد مشاهده مقاله: 140 تعداد دریافت فایل اصل مقاله: 188 |