تعداد نشریات | 32 |
تعداد شمارهها | 719 |
تعداد مقالات | 7,024 |
تعداد مشاهده مقاله | 11,554,130 |
تعداد دریافت فایل اصل مقاله | 7,911,831 |
Fuzzy Time-Fractional Advection-Dispersion and Navier-Stokes Equations: A Comprehensive Approach | ||
Iranian Journal of Fuzzy Systems | ||
دوره 21، شماره 5، آذر و دی 2024، صفحه 105-119 اصل مقاله (1.06 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2024.48569.8574 | ||
نویسندگان | ||
H Hashemi1؛ Reza 09123618518 Ezzati2؛ nasser mikaeilvand mikaeilvand3؛ M Nazari4؛ Reza Ezzati* 5 | ||
1Department of Mathematics, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran | ||
2IAU- Karaj Branch | ||
3Islamic Azad university | ||
4Islamic Azad University | ||
5Islamic Azad University, karaj branch | ||
چکیده | ||
This paper presents a novel approach for modeling and analyzing complex systems with uncertain data by using fuzzy calculus and time-fractional dierential equations. Specically, we propose the use of the fuzzy Atangana-Baleanu time-fractional derivative with non-singular kernels for fuzzy functions as a suitable fractional derivative type for the qualitative analysis of fractional dierential equations in fuzzy space. Additionally, we provide a method for numer- ically solving fuzzy linear time-fractional equations in uid dynamics using the fuzzy Laplace transform iterative method. The eectiveness and practical relevance of our proposed method are demonstrated through concrete examples, including the fuzzy time-fractional Advection- Dispersion equation, the fuzzy time-fractional Navier-Stokes equation, and Couette ow . These examples showcase the potential of our method to address real-world problems in uid dynamics and provide a clear illustration of the solution steps involved. Our ndings high- light the importance of considering fuzzy calculus and time-fractional dierential equations in modeling and analyzing complex systems with uncertain data. | ||
کلیدواژهها | ||
The fuzzy Atangana-Baleanu time-fractional derivative؛ The fuzzy time-fractional Advection-Dispersion equation؛ The fuzzy time-fractional Navier-Stokes equation؛ Couette flow | ||
مراجع | ||
[1] R. Abdollahi, A. Khastan, J. Nieto, R. Rodriguez-Lopez, On the linear fuzzy model associated with Caputo-Fabrizio operator, Boundary Value Problems, 91 (2018). https://doi.org/10.1186/s13661-018-1010-2 [2] T. Allahviranloo, Difference methods for fuzzy partial differential equations, CMAM, 2 (2002), 233-242. https: //doi.org/10.2478/cmam-2002-0014 [3] T. Allahviranloo, K. M. Afshar, Numerical methods for fuzzy linear partial differential equations under new definition for derivative, Iranian Journal of Fuzzy Systems, 7(3) (2010), 33-50. https://doi.org/10.22111/IJFS.2010.187 [4] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, Journal of Intelligent and Fuzzy Systems, 26(3) (2014), 1481-1490. https://doi.org/10.3233/IFS-130831 [5] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Computing, 16(2) (2012), 297-302. https://doi.org/10.1007/s00500-011-0743-y [6] T. Allahviranloo, N. Taheri, An analytic approximation to the solution of fuzzy heat equation by adomian decomposition method, International Journal of Contemporary Mathematical Sciences, 4 (2009), 105-114. https: //www.m-hikari.com/ijcms-password2009/1-4-2009/allahviranlooIJCMS1-4-2009.pdf [7] M. Al-Smadi, O. A. Arqub, D. Zeidan, Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications, Chaos, Solitons and Fractals, 146 (2021), 110891. https://doi.org/10.1016/j.chaos.2021.110891 [8] F. I. A. Amir, A. Moussaoui, R. Shafqat, M. H. El Omari, S. Melliani, The Hadamard ψ-Caputo tempered fractional derivative in various types of fuzzy fractional differential equations, Soft Computing, 1-18 (2024). https://doi. org/10.1007/s12652-018-1055-1 [9] A. Armand, T. Allahviranloo, S. Abbasbandy, Z. Gouyandeh, Fractional relaxation-oscillation differential equations via fuzzy variational iteration method, Journal of Intelligent and Fuzzy Systems, 32 (2017), 363-371. https://doi. org/10.3233/JIFS-151940 [10] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm Science, 20(2) (2016), 763-9. https://doi.org/10.2298/TSCI160111018A [11] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Springer, London, (2013). https://doi.org/10.1007/ 978-3-642-35221-8 [12] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141. https://doi.org/10.1016/j.fss.2012.10.003 [13] Z. Eidinejad, R. Saadati, T. Allahviranloo, Attractiveness of pseudo almost periodic solutions for delayed cellular neural networks in the context of fuzzy measure theory in matrix-valued fuzzy spaces, Computational and Applied Mathematics, 41 (2022), 369. https://doi.org/10.1007/s40314-022-02074-z [14] Z. Eidinejad, R. Saadati, T. Allahviranloo, F. Kiani, S. Noeiaghdam, Existence of a unique solution and the Hyers–Ulam-H-Fox stability of the conformable fractional differential equation by matrix-valued fuzzy controllers, Complexity, 2022, 5630187, 26 pages. https://doi.org/10.1155/2022/5630187 [15] Z. Eidinejad, R. Saadati, T. Allahviranloo, C. Li, Novel stability study on volterra integral equations with delay (VIE-D) using the fuzzy minimum optimal controller in matrix-valued fuzzy Banach spaces, Computational and Applied Mathematics, 42 (2023), 215. https://doi.org/10.1007/s40314-023-02362-2 [16] Z. Eidinejad, R. Saadati, C. Li, M. Inc, J. Vahidi, The multiple exp-function method to obtain soliton solutions of the conformable Date-Jimbo-Kashiwara-Miwa equations, International Journal of Modern Physics B, 38(03) (2024), 2450043. https://doi.org/10.1142/S0217979224500437 [17] Z. Eidinejad, R. Saadati, R. Mesiar, C. Li, New stability results of an ABC fractional differential equation in the symmetric matrix-valued FBS, Symmetry, 14 (2022), 2667. https://doi.org/10.3390/sym14122667 [18] Z. Eidinejad, R. Saadati, J. Vahidi, C. Li, Numerical solutions of 2D stochastic time-fractional Sine-Gordon equation in the Caputo sense, International Journal of Numerical Modelling, 36(6) (2023), e3121. https://doi.org/ 10.1002/jnm.3121 [19] Z. Eidinejad, R. Saadati, J. Vahidi, D. O’Regan, Numerical solutions for the new Coronavirus (COVID 19) mathematical model by the operational matrix using the clique polynomials method, Heliyon, 10(8) (2024), e29545. https://doi.org/10.1016/j.heliyon.2024.e29545 [20] R. Ezzati, K. Maleknejad, E. Fathizadeh, CAS wavelet function method for solving Abel equations with error analysis, International Journal of Research in Industrial Engineering, 6(4) (2017), 350-364. https://doi.org/10. 22105/riej.2017.100538.1017 [21] R. Ezzati, S. Zabihi, Fuzzy fractional calculus: A comprehensive overview with a focus on weighted Caputo-type generalized Hukuhara differentiability and analytical solutions for fuzzy fractional differential equations, Iranian Journal of Fuzzy Systems, 21(2) (2024), 19-34. https://doi.org/10.22111/IJFS.2024.45607.8045 [22] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and Systems, 106(1) (1999), 35-48. https://doi.org/10.1016/S0165-0114(98)00355-8 [23] M. Ghaffari, T. Allahviranloo, S. Abbasbandy, M. Azhini, On the fuzzy solutions of time-fractional problems, Iranian Journal of Fuzzy Systems, 18(3) (2021), 51-66. https://doi.org/10.22111/IJFS.2021.6081 [24] A. Harir, S. Melliani, L. Saadia Chadli, Fuzzy generalized conformable fractional derivative, Advances in Fuzzy Systems, (2020), 1954975. https://doi.org/10.1155/2020/1954975 [25] A. Harir, S. Melliani, L. Saadia Chadli, Fuzzy conformable fractional differential equations, International Journal of Differential Equations, (2021), 6655450. https://doi.org/10.1155/2021/6655450 [26] H. Hashemi, R. Ezzati, N. Mikaeilvand, M. Nazari, Study on fuzzy fractional European option pricing model with Mittag-Leffler kernel, Journal of Intelligent and Fuzzy Systems, 1-16 (2023). https://doi.org/10.3233/ JIFS-232094 [27] N. V. Hoa, H. Vu, T. M. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Sets and Systems, 375(15) (2019), 70-99. https://doi.org/10.1016/j.fss.2018.08.001 [28] R. Khaliq, P. Iqbal, Sh. Bhat, R. Singh, Sh. Jain, P. Agarwal, Generalized Hukuhara derivative approach for Gompertz tumor growth with allee effect under fuzzy environment, Journal of Fuzzy Extension and Applications, 4(4) (2023), 246-256. [29] M. Khasteh, Sh. Refahi, H. Amir, F. Shariffar, A novel numerical approach for distributed order time fractional COVID-19 virus model, Journal of Applied Research on Industrial Engineering, 9(4) (2022), 442-453. https:// doi.org/10.22105/jarie.2022.305182.1381 [30] N. T. Kim Sona, H. T. Phuong Thao, N. P. Dong, H. Viet Long, Fractional calculus of linear correlated fuzzyvalued functions related to Fr´echet differentiability, Fuzzy Sets and Systems. Advance Online Publication, (2021). https://doi.org/10.1016/j.fss.2020.10.019 [31] S. Kumar, V. Gupta, An application of variational iteration method for solving fuzzy time-fractional diffusion equations, Neural Computing and Applications, 33 (2021), 17659-17668. https://doi.org/10.1007/ s00521-021-06354-3 [32] M. M. Mahmoud, J. Iman, Finite volume methods for fuzzy parabolic equations, Journal of Mathematics and Computer Science, 2(3) (2011), 546-558. http://dx.doi.org/10.22436/jmcs.02.03.17 [33] M. Nadeem, S. A. Edalatpanah, I. Mahariq, W. H. F. Aly, Analytical view of nonlinear delay differential equations using sawi iterative scheme, Symmetry, 14(11) (2022), 2430. https://doi.org/10.3390/sym14112430 [34] R. Nawaz, N. Fewster-Young, N. Muhammad Katbar, N. Ali, L. Zada, R. W. Ibrahim, W. Jamshed, H. Alqahtani, Numerical inspection of (3 + 1)- perturbed Zakharov-Kuznetsov equation via fractional variational iteration method with Caputo fractional derivative, Numerical Heat Transfer, Part B: Fundamentals, 1-16 (2023). https://doi.org/ 10.1080/10407790.2023.2262123 [35] U. M. Pirzada, D. C. Vakaskar, Solution of fuzzy heat equations using Adomian decomposition method, International Journal of Advanced Applied Mathematics and Mechanics, 3(1) (2015), 87-91. [36] K. Sabzi, T. Allahviranloo, S. Abbasbandy, A fuzzy generalized power series method under generalized Hukuhara differentiability for solving fuzzy Legendre differential equation, Soft Computing, 24 (2020), 8763-8779. https: //doi.org/10.1007/s00500-020-04913-9 [37] S. Salahshour, T. Allahviranloo, Applications of fuzzy Laplace transforms, Soft Computing, 17(1) (2013), 145-158. https://doi.org/10.1007/s00500-012-0907-4 [38] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Communications in Nonlinear Science and Numerical Simulation, 17(4) (2012), 1372-1381. https: //doi.org/10.1016/j.cnsns.2011.07.005 [39] S. Salahshour, M. Khezerloo, S. Hajighasemi, M. Khorasany, Solving fuzzy integral equations of the second kind by fuzzy Laplace transform method, International Journal of Industrial Mathematics, 4(1) (2012), 21-29. [40] A. P. Singh, K. Bingi, Applications of fractional-order calculus in robotics, Fractal and Fractional, 8(7) (2024), 403. https://doi.org/10.3390/fractalfract8070403 [41] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161(11) (2010), 1564-1584. https://doi.org/10.1016/j.fss.2009.06.009 [42] H. Viet Long, N. Thi Kim Son, H. Thi Thanh Tam, The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability, Fuzzy Sets and Systems, 309 (2017), 35-63. https://doi.org/10.1016/j.fss. 2016.06.018. [43] H. Y´epez-Mart´ınez, J. F. G´omez-Aguilar, M. Inc, New modified Atangana-Baleanu fractional derivative applied to solve nonlinear fractional differential equations, Physica Scripta, 98(3) (2023), 035202. https://doi.org/10. 1088/1402-4896/acb591 [44] S. Zabihi, R. Ezzati, F. Fattahzadeh, J. Rashidinia, Application of fuzzy finite difference scheme for the non-homogeneous fuzzy heat equation, Soft Computing, 26 (2022), 2635-2650. https://doi.org/10.1007/ s00500-021-06670-9 [45] H. Zureigat, M. Al-Smadi, A. Al-Khateeb, S. Al-Omari, S. E. Alhazmi, Fourth-order numerical solutions for a fuzzy time-fractional convection-diffusion equation under caputo generalized Hukuhara derivative, Fractal and Fractional, 7 (2023), 47. https://doi.org/10.3390/fractalfract7010047 | ||
آمار تعداد مشاهده مقاله: 36 تعداد دریافت فایل اصل مقاله: 63 |