
تعداد نشریات | 33 |
تعداد شمارهها | 776 |
تعداد مقالات | 7,514 |
تعداد مشاهده مقاله | 12,601,492 |
تعداد دریافت فایل اصل مقاله | 8,522,417 |
Identifying Effective Genes as Targets for RNA Interference in Sustainable Pest Control Strategies | ||
Journal of Epigenetics | ||
مقاله 1، دوره 6، شماره 1، شهریور 2025، صفحه 1-16 اصل مقاله (699.42 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22111/jep.2025.50424.1075 | ||
نویسنده | ||
Azam Amiri* | ||
Department of Landscape Engineering, Faculty of Geography and Environmental Planning. University of Sistan and Baluchestan, Zahedan, Iran. | ||
چکیده | ||
RNA interference (RNAi) is a powerful genetic tool that has revolutionized pest management by enabling targeted silencing of specific insect genes. By introducing double-stranded RNA (dsRNA) to target genes, RNAi can lead to phenotypic changes, reduced fitness, or even mortality in pest species, providing an alternative to chemical insecticides chemical insecticides. However, the efficacy of RNAi is highly variable across different insect orders and target genes. RNAi could target specific genes involved in an insect’s critical biological processes, such as growth, immunity, digestion, reproduction, and metabolism. This study reviews the potential of RNAi-based pest management strategies by focusing on key genes from various insect orders based on the significance of these orders in pest management, including Hemiptera, Neuroptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera. We address the variability in RNAi efficacy across different insect species, influenced by factors such as RNA degradation, delivery challenges, and organ-specific responses to gene silencing. Specifically, genes involved in cuticle formation, molting, chitin metabolism, immune response, and nervous system function are identified as prime candidates for RNAi-mediated pest control. For example, genes like chitin synthase, chitinase, acetylcholinesterase, and sex-determining genes show significant potential in reducing pest fitness, inducing mortality, and disrupting reproduction. Overall, this research provides valuable insights into the potential of RNAi as a species-specific and environmentally sustainable approach to pest control, laying the groundwork for developing innovative pest management tools that could reduce reliance on chemical insecticides. | ||
کلیدواژهها | ||
Insect؛ Gene silencing؛ Pest control؛ RNAi؛ Target genes | ||
مراجع | ||
(2016). Insecticidal potency of RNAi-based catalase knockdown in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Pest Management Science, 72(11), 2118–2127. https://doi.org/10.1002/ps.4242
Ahmad, T., & Rasool, A. (2021). Hydrolytic Enzymes and Integrated Pest Management. Microbes for Sustainable Insect Pest Management: Hydrolytic Enzyme & Secondary Metabolite–Volume 2, 59-74. https://doi.org/10.1007/978-3-030-67231-7_3
Altstein, M., & Nässel, D. R. (2010). Neuropeptide signaling in insects. Neuropeptide systems as targets for parasite and pest control, 155-165. https://doi.org/10.1007/978-1-4419-6902-6_8
Belles, X. (2020). Hormones involved in the regulation of metamorphosis. Insect Metamorphosis, 105-130.
Ben-Shahar, Y. (2015). Editorial overview: Neuroscience: How nervous systems generate behavior: lessons from insects. Current Opinion in Insect Science, 12, v-vii. doi: 10.1016/J.COIS.2015.10.005
Bento, F. M. M., Marques, R. N., Campana, F. B., Demetrio, C. G. B., Leandro, R. A., Parra, J. R. P., & Figueira, A. (2020). Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta. Pest Management Science, 76(1), 287–295. DOI: 10.1002/ps.5513
Bomble, P., & Nath, B. B. (2024). Impact of singular versus combinatorial environmental stress on RONS generation in Drosophila melanogaster larvae. Frontiers in Physiology, 15, 1426169. https://doi.org/10.3389/fphys.2024.1426169
Campbell, E., Ball, A., Hoppler, S., & Bowman, A. (2008). Invertebrate aquaporins: A review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 178(8), 935–955. DOI: 10.1007/s00360-008-0288-2
Cao, M., Gatehouse, J. A., & Fitches, E. C. (2018). A systematic study of RNAi effects and dsRNA stability in Tribolium castaneum and Acyrthosiphon pisum, following injection and ingestion of analogous dsRNAs. International Journal of Molecular Sciences, 19(4), 1079. DOI: 10.3390/ijms19041079
Castellanos, N. L., Smagghe, G., Sharma, R., Oliveira, E. E., & Christiaens, O. (2019). Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Management Science, 75(2), 537–548. https://doi.org/10.1002/ps.5167
Cedden, D., Güney, G., Debaisieux, X., Scholten, S., Rostás, M., & Bucher, G. (2024). Effective target genes for RNA interference‐based management of the cabbage stem flea beetle. Insect Molecular Biology. https://doi.org/10.1111/imb.12942
Chen, C. H., & Chen, C. H. (2020). Detoxifying metabolism: Detoxification enzymes. Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense, 71-81. https://doi.org/10.1007/978-3-030-41679-9_7
Choi, M. Y., & Vander Meer, R. K. (2009). Identification of a new member of the PBAN family of neuropeptides from the fire ant, Solenopsis invicta. Insect molecular biology, 18(2), 161-169. https://doi.org/10.1111/j.1365-2583.2009.00867.x
Choi, M. Y., & Vander Meer, R. K. (2019). Phenotypic effects of PBAN RNAi using oral delivery of dsRNA to corn earworm (Lepidoptera: Noctuidae) and tobacco budworm larvae. Journal of economic entomology, 112(1), 434-439. https://doi.org/10.1093/jee/toy356
Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Current neuropharmacology, 11(3), 315-335. doi: 10.2174/1570159X11311030006
Denlinger, D. L. (2023). Insect diapause: from a rich history to an exciting future. Journal of Experimental Biology, 226(4), jeb245329. https://doi.org/10.1242/jeb.245329
DiPolo, R., Berberián, G., & Beaugé, L. (2004). Phosphoarginine regulation of the squid nerve Na+/Ca2+ exchanger: metabolic pathway and exchanger–ligand interactions different from those seen with ATP. The Journal of Physiology, 554(2), 387-401. https://doi.org/10.1113/jphysiol.2003.050930
Doucet, D., & Retnakaran, A. (2012). Insect chitin: metabolism, genomics and pest management. In Advances in insect physiology (Vol. 43, pp. 437-511). Academic Press. https://doi.org/10.1016/B978-0-12-391500-9.00006-1
Einhorn, E., & Imler, J. L. (2019). Insect immunity: from systemic to chemosensory organs protection. Olfactory Concepts of Insect Control-Alternative to insecticides: Volume 2, 205-229. https://doi.org/10.1007/978-3-030-05165-5_9
Eleftherianos, I., Millichap, P. J., & Reynolds, S. E. (2006). RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Developmental & Comparative Immunology, 30(12), 1099-1107. https://doi.org/10.1016/j.dci.2006.02.008
Galvin, J., Larson, E. L., Yedigarian, S., Rahman, M., Borziak, K., DeNieu, M., & Manier, M. K. (2021). Genetic coordination of sperm morphology and seminal fluid proteins promotes male reproductive success in Drosophila melanogaster. bioRxiv, 2021-11. https://doi.org/10.1101/2021.11.15.468624
Guan, R., Li, H., & Miao, X. (2017). RNAi pest control and enhanced BT insecticidal efficiency achieved by dsRNA of chymotrypsin-like genes in Ostrinia furnacalis. Journal of Pest Science, 90(2), 745–757. DOI: 10.1007/s10340-016-0797-9
Guan, G. X., Yu, X. P., & Li, D. T. (2023). Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine. Biology, 12(10), 1283. https://doi.org/10.3390/biology12101283
Güney, G., Cedden, D., Hänniger, S., Hegedus, D. D., Heckel, D. G., & Toprak, U. (2024). Peritrophins are involved in the defense against Bacillus thuringiensis and nucleopolyhedrovirus formulations in Spodoptera littoralis (Lepidoptera: Noctuidae). Insect Biochemistry and Molecular Biology, 166, 104073. https://doi.org/10.1016/j.ibmb.2024.104073
Grizanova, E. V., Coates, C. J., Butt, T. M., & Dubovskiy, I. M. (2021). RNAi-mediated suppression of insect metalloprotease inhibitor (IMPI) enhances Galleria mellonella susceptibility to fungal infection. Developmental and Comparative Immunology, 122, 104126. DOI: 10.1016/j.dci.2021.104126
Hafeez, M., Li, X. W., Zhang, J. M., Zhang, Z. J., Huang, J., Wang, L. K., ... & Lu, Y. B. (2021). Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. Insect Science, 28(3), 611-626.
https://doi.org/10.1111/1744-7917.12906
Hanamasagar, Y., Ramesha, N. M., Mahapatra, S., Panigrahi, C. K., Vidhya, C. S., Agnihotri, N., & Satapathy, S. N. (2024). Advancing RNAi for Sustainable Insect Management: Targeted Solutions for Eco-friendly Pest Control. Journal of Experimental Agriculture International, 46(6), 740-775.
Harvey-Samuel, T., Xu, X., Anderson, M. A., Carabajal Paladino, L. Z., Purusothaman, D., Norman, V. C., ... & Alphey, L. (2022). Silencing RNAs expressed from W-linked PxyMasc “retrocopies” target that gene during female sex determination in Plutella xylostella. Proceedings of the National Academy of Sciences, 119(46), e2206025119. https://doi.org/10.1073/pnas.2206025119
Holtof, M., Lenaerts, C., Cullen, D., & Vanden Broeck, J. (2019). Extracellular nutrient digestion and absorption in the insect gut. Cell and Tissue Research, 377(3), 397–414. DOI: 10.1007/s00441-019-03031-9
Hrithik, M. T. H., Vatanparast, M., Ahmed, S., & Kim, Y. (2021). Repat33 acts as a downstream component of eicosanoid signaling pathway mediating immune responses of Spodoptera exigua, a Lepidopteran insect. Insects, 12(5), 449. DOI: 10.3390/insects12050449
Jagdale, S., Bansode, S., & Joshi, R. (2017). Insect proteases: Structural-functional outlook. Proteases in Physiology and Pathology, 451-473. https://doi.org/10.1007/978-981-10-2513-6_21
Jalloh, B., Rounds, J. C., Brown, B. E., Lancaster, C. L., Leung, S. W., Banerjee, A., ... & Moberg, K. H. (2020). The Nab2 RNA binding protein promotes sex-specific splicing of Sex lethal in Drosophila neuronal tissue. BioRxiv, 2020-11. https://doi.org/10.1101/2020.11.13.382168
Ji, S.-X., Wang, X.-D., Shen, X.-N., Liang, L., Liu, W.-X., Wan, F.-H., & Lu, Z.-C. (2020). Using RNA interference to reveal the function of chromatin remodeling factor ISWI in temperature tolerance in Bemisia tabaci Middle East-Asia Minor 1 Cryptic species. Insects, 11(2), 113. DOI: 10.3390/insects11020113
Jiang, F. Z., Zheng, L. Y., Guo, J. X., & Zhang, G. R. (2015). Effects of temperature stress on insect fertility and its physiological and biochemical mechanisms. Journal of Environmental Entomology, 37(3), 653-663.
Jiang, L.-H., Mu, L.-L., Jin, L., Anjum, A. A., & Li, G.-Q. (2021). RNAi for chitin synthase 1 rather than 2 causes growth delay and molting defect in Henosepilachna vigintioctopunctata. Pesticide Biochemistry and Physiology, 178, 104934. DOI: 10.1016/j.pestbp.2021.104934
Jin, H., Abouzaid, M., Lin, Y., Hull, J. J., & Ma, W. (2021). Cloning and RNAi-mediated three lethal genes that can be potentially used for Chilo suppressalis (Lepidoptera: Crambidae) management. Pesticide Biochemistry and Physiology, 174, 104828. DOI: 10.1016/j.pestbp.2021.104828
Jung, J., Sajjadian, S. M., & Kim, Y. (2019). Hemolin, an immunoglobulin-like peptide, opsonizes nonself targets for phagocytosis and encapsulation in Spodoptera exigua, a lepidopteran insect. Journal of Asia-Pacific Entomology, 22(3), 947–956. DOI: https://doi.org/10.1016/j.aspen.2019.08.002
Kashung, S., Bhardwaj, P., Saikia, M., & Mazumdar-Leighton, S. (2023). Midgut serine proteinases participate in dietary adaptations of the castor (Eri) silkworm Samia ricini Anderson transferred from Ricinus communis to an ancestral host, Ailanthus excelsa Roxb. Frontiers in Insect Science, 3, 1169596. doi: 10.3389/finsc.2023.1169596
Katsavou, E., Riga, M., Ioannidis, P., King, R., Zimmer, C. T., & Vontas, J. (2022). Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. Pesticide Biochemistry and Physiology, 181, 105005. https://doi.org/10.1016/j.pestbp.2021.105005
Kingsolver, M. B., & Hardy, R. W. (2012). Making connections in insect innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18639–18640. DOI: 10.1073/pnas.1216736109
Klowden. Marc, J., (2008). CHAPTER 11 - Nervous Systems. 523-595. doi: 10.1016/B978-0-12-415819-1.00011-8
Lee, S. G., Kang, C., Saad, B., Nguyen, K. N. H., Guerra-Phalen, A., Bui, D., ... & Kim, W. J. (2022). Multisensory inputs control the regulation of time investment for mating by sexual experience in male Drosophila melanogaster. bioRxiv, 2022-09. https://doi.org/10.1101/2022.09.23.509131
Li, J., Zhang, X., Hou, Y., & Tang, B. (2014). Effects of multiple mating on the fecundity of an invasive pest (O ctodonta nipae): the existence of an intermediate optimal female mating rate. Physiological Entomology, 39(4), 348-354. https://doi.org/10.1111/phen.12081
Li, J., Shi, Y., Xue, Q., Smagghe, G., De Schutter, K., & Taning, C. N. T. (2024). Identification and functional analysis of gut dsRNases in the beet armyworm Spodoptera exigua. Insect Biochemistry and Molecular Biology, 175, 104206. https://doi.org/10.1016/j.ibmb.2024.104206
Limón Pacheco, J. H., Carballo, M. A., & Gonsebatt, M. E. (2017). Antioxidants against environmental factor-induced oxidative stress. Nutritional Antioxidant Therapies: Treatments and Perspectives, 189-215. https://doi.org/10.1007/978-3-319-67625-8_8
Lin, L., Jiang, H., Hadiatullah, H., Ma, R., Korza, H., Gu, Y., & Yuchi, Z. (2022). Calmodulin modulation of insect ryanodine receptors. Journal of Agricultural and Food Chemistry, 70(51), 16156-16163. https://doi.org/10.1021/acs.jafc.2c07519
Lin, X., Zhou, Y., & Xue, L. (2024). Mitochondrial complex I subunit MT-ND1 mutations affect disease progression. Heliyon. doi: 10.1016/j.heliyon.2024.e28808
List, F., Tarone, A. M., Zhu‐Salzman, K., & Vargo, E. L. (2022). RNA meets toxicology: efficacy indicators from the experimental design of RNAi studies for insect pest management. Pest Management Science, 78(8), 3215-3225. DOI:10.1002/ps.6884
Liu, Z., Wang, Y., Nanda, S., Li, Z., Li, Y., Guo, M., … Pan, H. (2023). Oral delivery of dsHvUSP is a promising method for Henosepilachna vigintioctopunctata control with no adverse effect on the non-target insect Propylea japonica. Entomologia Generalis, 43(1), 157–165. DOI: 10.1127/entomologia/2023/1750
Lu, Z. J., Huang, Y. L., Yu, H. Z., Li, N. Y., Xie, Y. X., Zhang, Q., ... & Su, H. N. (2019). Silencing of the chitin synthase gene is lethal to the Asian citrus psyllid, Diaphorina citri. International Journal of Molecular Sciences, 20(15), 3734. https://doi.org/10.3390/ijms20153734
Lu, K., Song, Y., & Zeng, R. (2021). The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Current Opinion in Insect Science, 43, 103-107. https://doi.org/10.1016/j.cois.2020.11.004
Lu, J., & Shen, J. (2024). Target genes for RNAi in pest control: A comprehensive overview. Entomologia Generalis, 44(1). DOI: 10.1127/entomologia/2023/2207
Majidiani, S., PourAbad, R. F., Laudani, F., Campolo, O., Zappala, L., Rahmani, S., … Palmeri, V. (2019). RNAi in Tuta absoluta management: Effects of injection and root delivery of dsRNAs. Journal of Pest Science, 92(4), 1409–1419. https://doi.org/10.1007/s10340-019-01097-6
Malik, H. J., Raza, A., Amin, I., Scheffler, J. A., Scheffler, B. E., Brown, J. K., & Mansoor, S. (2016). RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Scientific Reports, 6(1), 38469. https://doi.org/10.1038/srep38469
Martynov, A. G., Elpidina, E. N., Perkin, L., & Oppert, B. (2015). Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum. BMC genomics, 16, 1-16. https://doi.org/10.1186/s12864-015-1306-x
Moussian, B. (2010). Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 40(5), 363–375. https://doi.org/10.1016/j.ibmb.2010.03.003
Mysore, K., Sun, L., Li, P., Roethele, J. B., Misenti, J. K., Kosmach, J., ... & Duman-Scheel, M. (2022). A conserved female-specific requirement for the GGT gene in mosquito larvae facilitates RNAi-mediated sex separation in multiple species of disease vector mosquitoes. Pathogens, 11(2), 169. doi: 10.3390/pathogens11020169
Nauen, R., Bass, C., Feyereisen, R., & Vontas, J. (2022). The role of Cytochrome P450s in insect toxicology and resistance. Annual Review of Entomology, 67(1), 105–124. https://doi.org/10.1146/annurev-ento-070621-061328
Ni, J. Q., Liu, L. P., Binari, R., Hardy, R., Shim, H. S., Cavallaro, A., ... & Perrimon, N. (2009). A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics, 182(4), 1089-1100. https://doi.org/10.1534/genetics.109.103630
Numata, H., & Shintani, Y. (2023). Diapause in univoltine and semivoltine life cycles. Annual Review of Entomology, 68(1), 257-276. https://doi.org/10.1146/annurev-ento-120220-101047
Overgaard, J., SØRENSEN, J. G., Petersen, S. O., Loeschcke, V., & Holmstrup, M. (2006). Reorganization of membrane lipids during fast and slow cold hardening in Drosophila melanogaster. Physiological Entomology, 31(4), 328-335. https://doi.org/10.1111/j.1365-3032.2006.00522.x
Palli, S. R. (2023). RNAi turns 25: contributions and challenges in insect science. Frontiers in Insect Science, 3, 1209478. https://doi.org/10.3389/finsc.2023.1209478/full
Pang, Y.-P. (2014). Insect Acetylcholinesterase as a target for effective and environmentally safe insecticides. In E. Cohen (Ed.), Advances in Insect Physiology (Vol. 46, pp. 435–494). Academic Press. https://doi.org/10.1016/B978-0-12-417010-0.00006-9
Park, Y., Kumar, S., Kanumuri, R., Stanley, D., & Kim, Y. (2015). A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth. Insect Biochemistry and Molecular Biology, 66, 13–23. https://doi.org/10.1016/j.ibmb.2015.09.012
Perrotta, M. M., Lucibelli, F., Mazzucchiello, S. M., Fucci, N., Hay Mele, B., Giordano, E., ... & Saccone, G. (2023). Female sex determination factors in Ceratitis capitata: Molecular and structural basis of TRA and TRA2 recognition. Insects, 14(7), 605. https://doi.org/10.3390/insects14070605
Qiu, J., He, Y., Zhang, J., Kang, K., Li, T., & Zhang, W. (2016). Discovery and functional identification of fecundity‐related genes in the brown planthopper by large‐scale RNA interference. Insect Molecular Biology, 25(6), 724-733. https://doi.org/10.1111/imb.12257
Qiu, C., Zhang, Y., Fan, Y. J., Pang, T. L., Su, Y., Zhan, S., & Xu, Y. Z. (2019). HITS-CLIP reveals sex-differential RNA binding and alterative splicing regulation of SRm160 in Drosophila. Journal of Molecular Cell Biology, 11(2), 170-181. https://doi.org/10.1093/jmcb/mjy029
Richardson, R. J. (2018). Section VI: Selected Neurotoxic Agents–Pesticides: Anticholinesterase Insecticides. In Comprehensive Toxicology (pp. 308-318). Elsevier. 10.1016/B978-0-12-801238-3.65386-2
Roy, S., Saha, T. T., Zou, Z., & Raikhel, A. S. (2018). Regulatory pathways controlling female insect reproduction. Annual Review of Entomology, 63(1), 489–511. https://doi.org/10.1146/annurev-ento-020117-043258
Saxena, S., Reddy, K. R. K., & Rajam, M. V. (2022). dsRNA-mediated silencing of chitin synthase A (CHSA) affects growth and development of Leucinodes orbonalis, brinjal fruitand shoot borer. Journal of Asia-Pacific Entomology, 25(2), 101908. https://doi.org/10.1016/j.aspen.2022.101908
Shapiro, J. P., Wasserman, H. A., Greany, P. D., & Nation, J. L. (2000). Vitellin and vitellogenin in the soldier bug, Podisus maculiventris: Identification with monoclonal antibodies and reproductive response to diet. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 44(3), 130-135. https://doi.org/10.1002/1520-6327(200007)44:3<130::AID-ARCH4>3.0.CO;2-B
Shim, J. K., Lee, G. S., Lee, S., & Lee, K. Y. (2015). Oral ingestion of heat shock protein 70 dsRNA is lethal under normal and thermal stress conditions in the sweetpotato whitefly, Bemisia tabaci. Journal of Asia-Pacific Entomology, 18(4), 797-800. https://doi.org/10.1016/j.aspen.2015.10.004
Shimada, S., Oosaki, M., Takahashi, R., Uene, S., Yanagisawa, S., Tsukihara, T., & Shinzawa-Itoh, K. (2018). A unique respiratory adaptation in Drosophila independent of supercomplex formation. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1859(2), 154-163. https://doi.org/10.1016/j.bbabio.2017.11.007
Shinhmar, H., Hoh Kam, J., Mitrofanis, J., Hogg, C., & Jeffery, G. (2022). Shifting patterns of cellular energy production (adenosine triphosphate) over the day and key timings for the effect of optical manipulation. Journal of Biophotonics, 15(10), e202200093. https://doi.org/10.1002/jbio.202200093
Smagghe, G., Zotti, M., & Retnakaran, A. (2019). Targeting female reproduction in insects with biorational insecticides for pest management: A critical review with suggestions for future research. Current Opinion in Insect Science, 31, 65–69. https://doi.org/10.1016/j.cois.2018.10.009
Sohail, S., Tariq, K., Zheng, W. W., Ali, M. W., Peng, W., Raza, M. F., & Zhang, H. Y. (2019). RNAi-mediated knockdown of Tssk1 and Tektin1 genes impair male fertility in Bactrocera dorsalis. Insects, 10(6), 164. https://doi.org/10.3390/insects10060164
Sota, T., Sugawara, H., Fujisawa, T., Fujimaki, K., & Niimi, T. (2018). Knockdown of rotund gene through larval RNA interference affects genital and elytral morphology in the ground beetle Carabus maiyasanus (Coleoptera: Carabidae). Entomological Science, 21(4), 469-474.
https://doi.org/10.1111/ens.12330
Storey, K. B., & Storey, J. M. (2012). Insect cold hardiness: Metabolic, gene, and protein adaptation. Canadian Journal of Zoology, 90(4), 456–475.
Suzuki, M. G., Imanishi, S., Dohmae, N., Asanuma, M., & Matsumoto, S. (2010). Identification of a male-specific RNA binding protein that regulates sex-specific splicing of Bmdsx by increasing RNA binding activity of BmPSI. Molecular and cellular biology, 30(24), 5776-5786. https://doi.org/10.1128/MCB.00444-10
Tariq, H., Gökçe, A., Naqqash, M., & Bakhsh, A. (2024). THE DSRNA-BASED GREEN PESTICIDES FOR THE CONTROL OF COLORADO POTATO BEETLE, LEPTINOTARSA DECEMLINEATA SAY (CHRYSOMELIDAE: COLEOPTERA). Eurasian Journal of Applied Biotechnology, (3S). https://doi.org/10.11134/symposium.32
Toprak, U., İnak, E., & Nauen, R. (2024). Lipid Metabolism as a Target Site in Pest Control. Advances in Experimental Medicine and Biology, doi: 10.1007/5584_2024_822
Truman, J. W., & Riddiford, L. M. (2002). Endocrine insights into the evolution of metamorphosis in insects. Annual Review of Entomology, 47(1), 467–500. https://doi.org/10.1146/annurev.ento.47.091201.145230
Ullah, F., Gul, H., Wang, X., Ding, Q., Said, F., Gao, X., ... & Song, D. (2019). RNAi-mediated knockdown of chitin synthase 1 (CHS1) gene causes mortality and decreased longevity and fecundity in Aphis gossypii. Insects, 11(1), 22. https://doi.org/10.3390/insects11010022
Vatanparast, M., & Kim, Y. (2017). Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. PLoS One, 12(8), e0183054. https://doi.org/10.1371/journal.pone.0183054
Vedanayagam, J., Lin, C. J., Papareddy, R., Nodine, M., Flynt, A. S., Wen, J., & Lai, E. C. (2022). Endogenous RNAi silences a burgeoning sex chromosome arms race. Biorxiv, 2022-08. https://doi.org/10.1101/2022.08.22.504821
Wan, X.-S., Shi, M.-R., Xu, J., Liu, J.-H., & Ye, H. (2021). Interference efficiency and effects of bacterium-mediated RNAi in the Fall Armyworm (Lepidoptera: Noctuidae). Journal of Insect Science, 21(5), 8. https://doi.org/10.1093/jisesa/ieab073
Wang, H., Shi, Y., Wang, L., Liu, S., Wu, S., Yang, Y., ... & Wu, Y. (2018). CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nature Communications, 9(1), 4820. https://doi.org/10.1038/s41467-018-07226-6
Wang, G., Zhou, J. J., Li, Y., Gou, Y. P., Quandahor, P., & Liu, C. Z. (2021). Trehalose and glucose levels regulate feeding behavior of the phloem-feeding insect, the pea aphid Acyrthosiphon pisum Harris. Scientific Reports, 11(1), 15864. https://doi.org/10.1038/s41598-021-95390-z
Wang, Y., Mbiza, N. I. T., Liu, T., Wang, Y., Zhang, Y., Luo, X., ... & Yu, Y. (2024). SfREPAT38, a pathogen response gene (REPAT), is involved in immune response of Spodoptera frugiperda larvae through mediating Toll signalling pathway. Insect Molecular Biology. https://doi.org/10.1111/imb.12909
Williamson, S. M., Moffat, C., Gomersall, M. A., Saranzewa, N., Connolly, C. N., & Wright, G. A. (2013). Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Frontiers in physiology, 4, 13. https://doi.org/10.3389/fphys.2013.00013
Willow, J., Soonvald, L., Sulg, S., Kaasik, R., Silva, A. I., Taning, C. N. T., … Veromann, E. (2021). RNAi efficacy is enhanced by chronic dsRNA feeding in pollen beetle. Communications Biology, 4(1), 444. https://doi.org/10.1038/s42003-021-01975-9
Wu, Q., Patočka, J., & Kuča, K. (2018). Insect antimicrobial peptides, a mini review. Toxins, 10(11), 461. https://doi.org/10.3390/toxins10110461
Xu, Q. Y., Deng, P., Li, A., Zhang, Q., Mu, L. L., Fu, K. Y., … Li, G.-Q. (2019). Functional characterization of ultraspiracle in Leptinotarsa decemlineata using RNA interference assay. Insect Molecular Biology, 28(5), 676–688. https://doi.org/10.1111/imb.12580
Yang, Y., Xu, S., Xu, J., Guo, Y., & Yang, G. (2014). Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects. PloS one, 9(6), e99120. https://doi.org/10.1371/journal.pone.0099120
Yu, J., Li, Z., Fu, Y., Sun, F., Chen, X., Huang, Q., ... & Sun, F. (2023). Single-cell RNA-sequencing reveals the transcriptional landscape of ND-42 mediated spermatid elongation via mitochondrial derivative maintenance in Drosophila testes. Redox Biology, 62, 102671. https://doi.org/10.1016/j.redox.2023.102671
Zahradníková, A., Pavelková, J., Sabo, M., Baday, S., & Zahradník, I. (2024). Structure-based mechanism of RyR channel operation by calcium and magnesium ions. bioRxiv, 2024-08. doi: https://doi.org/10.1101/2024.08.01.606133
Ze, L.-J., Jin, L., & Li, G.-Q. (2023). The compatible effects of RNA interference targeting laccase2 with biocontrol in Henosepilachna vigintioctopunctata. Entomologia Generalis, 43(1), 117–126. https://doi.org/10.1127/entomologia/2023/1644
Zhai, X. D., Zhang, S. Y., Chen, D., Li, W. J., Wang, J. J., & Wei, D. (2023). Comparative multi-tissue analyses identify testis-specific serine/threonine protein kinase (TSSK) genes involved in male fertility in the melon fly Zeugodacus cucurbitae. Pest Management Science, 79(6), 2040–2049. https://doi.org/10.1002/ps.7378
Zhang, H., Wang, Y., Liu, Y., Zhao, M., Jin, J., Zhou, Z., & Guo, J. (2019). Identification and expression patterns of three vitellogenin genes and their roles in reproduction of the alligatorweed flea beetle Agasicles hygrophila (Coleoptera: Chrysomelidae). Frontiers in Physiology, 10, 368. https://doi.org/10.3389/fphys.2019.00368
Zhang, Y. H., Ma, Z. Z., Zhou, H., Chao, Z. J., Yan, S., & Shen, J. (2022). Nanocarrier-delivered dsRNA suppresses wing development of green peach aphids. Insect Science, 29(3), 669–682. https://doi.org/10.1111/1744-7917.12953
Zhang, X. X., Iqbal, J., Wang, Y. C., Chang, Y. W., Hu, J., & Du, Y. Z. (2024). Integrated transcriptional and biochemical profiling suggests mechanisms associated with rapid cold hardening in adult Liriomyza trifolii (Burgess). Scientific Reports, 14(1), 24033. https://doi.org/10.1038/s41598-024-75146-1
Zheng, Z. Z., Sun, X., Zhang, B., Pu, J., Jiang, Z. Y., Li, M., ... & Xu, Y. Z. (2019). Alternative splicing regulation of doublesex gene by RNA-binding proteins in the silkworm Bombyx mori. RNA biology, 16(6), 809-820. doi: 10.1080/15476286.2019.1590177
Zhou, Y., Zhang, Y., Xu, K., Liu, R., Liu, W., Ma, H., & Yang, W. (2024). Chitin Deacetylase 1 Gene as an Optimal RNAi-Based Target for Controlling the Tomato Leaf Miner Tuta absoluta. Insects, 15(11), 838. https://doi.org/10.3390/insects15110838
Zhu, K. Y., & Palli, S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 65(1), 293–311. https://doi.org/10.1146/annurev-ento-011019-025224
Zhuo, J. C., Hu, Q. L., Zhang, H. H., Zhang, M. Q., Jo, S. B., & Zhang, C. X. (2018). Identification and functional analysis of the doublesex gene in the sexual development of a hemimetabolous insect, the brown planthopper. Insect Biochemistry and Molecular Biology, 102, 31–42. https://doi.org/10.1016/j.ibmb.2018.09.007 | ||
آمار تعداد مشاهده مقاله: 117 تعداد دریافت فایل اصل مقاله: 73 |