
تعداد نشریات | 32 |
تعداد شمارهها | 749 |
تعداد مقالات | 7,268 |
تعداد مشاهده مقاله | 12,004,836 |
تعداد دریافت فایل اصل مقاله | 8,184,385 |
Comment on L-convergence spaces via L-ordered co-Scott closed sets | ||
Iranian Journal of Fuzzy Systems | ||
دوره 22، شماره 1، فروردین و اردیبهشت 2025، صفحه 131-134 اصل مقاله (332.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22111/ijfs.2025.49905.8815 | ||
نویسندگان | ||
Li Lingqiang1؛ Jin Qiu* 2 | ||
1Department of Mathematics, Liaocheng University | ||
2Liaocheng University | ||
چکیده | ||
Han and Pang (IJFS 2024) introduced important L-convergence structures based on L- ordered co-Scott closed sets, extending strong L-concave structures. Since L-ordered co- Scott closed sets and L-convergence structures rely on L-order, while strong L-concave structures depend on pointwise order, the relationship between them is still not clear enough. To clarify this, we provide characterizations of both using pointwise orders, re- vealing that the definition of L-ordered co-Scott closed sets can be simplified, as its strat- ified condition can be derived from the L-ordered condition. This finding will streamline proofs in Han and Pang’s paper, as these conditions have been repeatedly verified. Addi- tionally, our insights will aid in accurately establishing the relationships between various lattice-valued co-Scott closed sets and lattice-valued concave structures. | ||
کلیدواژهها | ||
L-convex space؛ L-concave space؛ L-ordered co-Scott closed set؛ L-convergence space | ||
مراجع | ||
[1] R. Bˇelohl´avek, Fuzzy relational systems: Foundations and principles, Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, (2002). https://doi.org/10.1007/978-1-4615-0633-1 [2] X. C. Han, B. Pang, Convergence structures in L-concave spaces, Iranian Journal of Fuzzy Systems, 21(4) (2024), 61-80. https://doi.org/10.22111/ijfs.2024.48804.8608 [3] L. Q. Li, On the category of enriched (L,M)-convex spaces, Journal of Intelligent and Fuzzy Systems, 33 (2017), 3209-3216. https://doi.10.3233/JIFS-161491 [4] Y. Maruyama, Lattice-valued fuzzy convex geometry, RIMS Kokyuroku, 164 (2009), 22-37. http://hdl.handle. net/2433/140587 [5] B. Pang, Fuzzy convexities via overlap functions, IEEE Transactions on Fuzzy Systems, 31 (2023), 1071-1082. https://doi.org/10.1109/TFUZZ.2022.3194354 [6] F. G. Shi, Z. Y. Xiu, A new approach to the fuzzification of convex structures, Journal of Applied Mathematics, 2014 (2014), 1-12. https://doi.org/10.1155/2014/249183 [7] F. G. Shi, Z. Y. Xiu, (L,M)-fuzzy convex structures, Journal of Nonlinear Sciences and Applications, 10 (2017), 3655-3669. https://doi.org/10.22436/jnsa.010.07.25 [8] M. L. J. Van de Vel, Theory of convex structures, Elesevier Sicence Publishers, North-Holland, Amsterdam, 1993.
[9] X. Y. Wu, Y. W. Huang, L-convex convergence relation and L-convex ideal-convergence structure, Iranian Journal of Fuzzy Systems, 21(5) (2024), 31-49. https://doi.org/10.22111/ijfs.2024.49227.8679 [10] X. Y. Wu, E. Q. Li, Characterizations of L-concavities and L-convexities via derived relations, Hacettepe Journal of Mathematics and Statistics, 52(4) (2023), 876-895. https://doi.org/10.15672/hujms.1175332 [11] Z. Y. Xiu, Convergence structures in L-concave spaces, Journal of Nonlinear and Convex Analysis, 21(12) (2020), 2693-2703. [12] L. Zhang, B. Pang, Strong L-concave structures and L-convergence structures, Journal of Nonlinear and Convex Analysis, 21(12) (2021), 2759-2769. [13] L. Zhang, B. Pang, Convergence structures in (L,M)-fuzzy convex spaces, Filomat, 37 (2023), 2859-2877. https: //doi.org/10.2298/FIL2309859Z | ||
آمار تعداد مشاهده مقاله: 71 تعداد دریافت فایل اصل مقاله: 80 |